Session-based Recommendation with Graph Neural Networks

Yuyuan Tang² Yanqiao Zhu³ Liang Wang¹ Xing Xie⁴ Tieniu Tan¹ Shu Wu[⊥] ¹Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences ³Tongji University ⁴Microsoft Research Asia ²University of Science and Technology Beijing

Technical Highlights

We propose a novel method, Session-based Recommendation with Graph Neural Networks (SR-GNN), consisting of:

- 1. Modeling session graphs
- 2. Learning node representations
- 3. Generating session representations
- 4. Making recommendation

Extensive experiments conducted on real datasets show that SR-GNN evidently outperforms SOTA methods consistently.

Background

- Recommendation systems help users find relevant items that meet their interests.
- Previous personalized recommendation systems rely on long-term user profiles to make recommendations.
- In many real-world applications, long-term profiles may not exist. Only user behavior during an ongoing session is available.

Motivations

- Most RNN-based methods only model single-way transitions between consecutive items and neglect the context. How to effectively capture those item transitions in session sequences?
- To facilitate recommendation, how to obtain accurate item embeddings and session embeddings?

Our Model

- Model session sequences as graph-structured data.
- Based on session graphs, use Gated Graph Neural Networks (GGNNs) [?] to capture complex transitions of items and generate item embeddings.

Experiments and Analysis (2/2)

Step 3. Generating Session Embeddings

Represent a session by node embedding involved in that session.

Local embedding emphases the impact of the last click:

$$=\mathbf{v}_n$$
 (6

Global embedding is obtained via a soft-attention net:

 \mathbf{S}

$$\alpha_{i} = \mathbf{q}^{\top} \sigma(\mathbf{W}_{1}\mathbf{v}_{n} + \mathbf{W}_{2}\mathbf{v}_{i} + \mathbf{c}),$$
$$\mathbf{s}_{g} = \sum_{i=1}^{n} \alpha_{i}\mathbf{v}_{i}$$
(7)

Hybrid embedding combines two embedding vectors:

$$\mathbf{s}_{\mathsf{h}} = \mathbf{W}_{3}[\mathbf{s}_{\mathsf{l}}; \mathbf{s}_{\mathsf{g}}] \tag{8}$$

Step 4. Making Recommendation

Compute the recommending score by dot product session embedding with item embedding:

$$\hat{\mathbf{y}} = \operatorname{softmax}\left(\mathbf{s}_{\mathsf{h}}^{\top} \mathbf{v}\right)$$
 (9)

Experiments and Analysis (1/2)

I. Comparison with Baselines

III. Analysis on Session Sequence Lengths

Method	Yoocho	ose 1/64	Digir	ietica
in como d	Short	Long	Short	Long
NARM	71.44	60.79	51.22	45.75
STAMP	70.69	64.73	47.26	40.39
SR-GNN-L	70.11	69.73	49.04	50.97
SR-GNN-ATT	70.31	70.64	50.35	51.05
SR-GNN	70.47	70.70	50.49	51.27

Table 2. The performance of different methods with different session lengths evaluated in terms of P@20

Concluding Remarks

- 1. Session-based recommendation is indispensable where users' preference and historical records are hard to obtain.
- 2. We present a novel architecture for session-based recommendation that incorporates graph models into representing session sequences.
- 3. SR-GNN not only considers the complex structure and transitions between items of session sequences, but also develops a strategy to combine long-term

 Represent each session as the composition of the global preference and the current interest of that session using an attention network.

SR-GNN (1/2)

Step 1. Constructing Session Graphs

Each session sequence s is modeled as a directed graph $\mathcal{G}_s = (\mathcal{V}_s, \mathcal{E}_s)$.

Step 2. Learning Item Embeddings on Graphs

Adopting GGNNs for learning unified representations for all nodes in session graphs:

$$\mathbf{a}_{s,i}^{t} = \mathbf{A}_{s,i:} \left[\mathbf{v}_{1}^{t-1}, \dots, \mathbf{v}_{n}^{t-1} \right]^{\top} \mathbf{H} + \mathbf{b}, \qquad (1)$$

$$\mathbf{z}_{s,i}^{t} = \sigma \left(\mathbf{W}_{z} \mathbf{a}_{s,i}^{t} + \mathbf{U}_{z} \mathbf{v}_{i}^{t-1} \right), \qquad (2)$$

$$\mathbf{r}_{s,i}^{t} = \sigma \left(\mathbf{W}_{r} \mathbf{a}_{s,i}^{t} + \mathbf{U}_{r} \mathbf{v}_{i}^{t-1} \right), \qquad (3)$$

$$\widetilde{\mathbf{v}}_{i}^{t} = \tanh \left(\mathbf{W}_{o} \mathbf{a}_{s,i}^{t} + \mathbf{U}_{o} \left(\mathbf{r}_{s,i}^{t} \odot \mathbf{v}_{i}^{t-1} \right) \right), \qquad (4)$$

$$\mathbf{v}_{i}^{t} = \left(1 - \mathbf{z}_{s,i}^{t} \right) \odot \mathbf{v}_{i}^{t-1} + \mathbf{z}_{s,i}^{t} \odot \widetilde{\mathbf{v}}_{i}^{t}, \qquad (5)$$

Connection matrix A_s represents weighted connections of outgoing and incoming edges in the graph. An example is provided below:

_	-	
$\left(\right)$		

Method	Yoochoose 1/64		Yooch	oose $1/4$	Diginetica		
method	P@20	MRR@20	P@20	MRR@20	P@20	MRR@20	
POP	6.71	1.65	1.33	0.30	0.89	0.20	
S-POP	30.44	18.35	27.08	17.75	21.06	13.68	
tem-KNN [?]	51.60	21.81	52.31	21.70	35.75	11.57	
BPR-MF [?]	31.31	12.08	3.40	1.57	5.24	1.98	
FPMC [?]	45.62	15.01	—	—	26.53	6.95	
GRU4REC [?]	60.64	22.89	59.53	22.60	29.45	8.33	
NARM [?]	68.32	28.63	69.73	29.23	49.70	16.17	
STAMP [?]	68.74	29.67	70.44	30.00	45.64	14.32	
SR-GNN	70.57	30.94	71.36	31.89	50.73	17.59	

Table 1. The performance with other baselines over three datasets

II. Comparison with Connection Scheme Variants

Two connection schemes to augment relationships between items in each session graph:

- SR-GNN-NGC replaces the connection matrix with edge weights extracted from the global graph.
- SR-GNN-FC appends another connection matrix, which represents all higher-order relationships using boolean weights.

preferences and current interests of sessions to better predict users' next actions.

4. Comprehensive experiments confirm that the proposed algorithm can consistently outperform other state-of-art methods.

Contact Us

Bibliographies

- [1] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, "Gated Graph Sequence Neural Networks," in ICLR, 2016.
- [2] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, "Item-based Collaborative Filtering Recommendation Algorithms," in WWW, 2001.
- [3] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, "BPR: Bayesian Personalized Ranking from Implicit Feedback," in UAI, 2009.
- [4] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, "Factorizing Personalized Markov Chains for Next-basket Recommendation," in WWW, 2010.

 $\mathbf{A}_{s,i:} \in \mathbb{R}^{1 imes 2n}$

	T	Z	3	4	1	2	3	4
1	0	1	0	0	0	0	0	0
2	0	0	1/2	1/2	1/2	0	1/2	0
3	0	1	0	0	0	1	0	0
4	0	0	0	0	0	1	0	0

Figure 2. An example of the connection matrix.

Figure 3. The performance of different connection schemes

[5] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, "Session-based Recommendations with Recurrent Neural Networks," in ICLR, 2016.

[6] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, "Neural Attentive Session-based Recommendation," in CIKM, 2017.

[7] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, "STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation," in *SIGKDD*, 2018.

