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ABSTRACT

Multimedia content is of predominance in the modern Web era.
Investigating how users interact with multimodal items is a con-
tinuing concern within the rapid development of recommender
systems. The majority of previous work focuses on modeling user-
item interactions with multimodal features included as side infor-
mation. However, this scheme is not well-designed for multimedia
recommendation. Specifically, only collaborative item-item relation-
ships are implicitly modeled through high-order item-user-item
relations. Considering that items are associated with rich contents
in multiple modalities, we argue that the latent semantic item-item
structures underlying these multimodal contents could be beneficial
for learning better item representations and further boosting rec-
ommendation. To this end, we propose a LATent sTructure mining
method for multlmodal reCommEndation, which we term LAT-
TICE for brevity. To be specific, in the proposed LATTICE model,
we devise a novel modality-aware structure learning layer, which
learns item-item structures for each modality and aggregates mul-
tiple modalities to obtain latent item graphs. Based on the learned
latent graphs, we perform graph convolutions to explicitly inject
high-order item affinities into item representations. These enriched
item representations can then be plugged into existing collabora-
tive filtering methods to make more accurate recommendations.
Extensive experiments on three real-world datasets demonstrate
the superiority of our method over state-of-the-art multimedia rec-
ommendation methods and validate the efficacy of mining latent
item-item relationships from multimodal features.
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1 INTRODUCTION

With the rapid development of Internet, recommender systems
have become an indispensable tool to help users find relevant in-
formation. Nowadays, users are easily accessible to large amounts
of online information represented in multiple modalities, including
images, texts, videos, etc. Recent years have witnessed growing
research interests on multimedia recommendation, which aims to
predict whether a user will interact with an item with multimodal
contents. It has been successfully applied to many online appli-
cations, such as e-commerce, instant video platforms, and social
media platforms.

Focusing on exploiting abundant user-item interactions, col-
laborative filtering (CF) serves as a foundation of personalized
recommender systems, which encodes users and items into low-
dimensional dense vectors and makes recommendations based on
these embeddings [1, 15, 33]. Traditional work on multimedia rec-
ommendation, e.g., VBPR [13], DeepStyle [24], and ACF [3], extends
the vanilla CF framework by incorporating multimodal contents as
side information in addition to ID embeddings of items. However,
as these methods only model direct user-item interactions, their
expressiveness is confined.

Inspired by the recent surge of graph neural networks [16, 21, 35],
Wang et al. [36] propose to model user-item relationships as bipar-
tite graphs and inject high-order interactions into the embedding
process to learn better representations. These graph-based recom-
mender systems [14, 41, 43] achieve great success and obtain state-
of-the-art performance. Recently, many attempts have been made
to integrate multimodal contents into graph-based recommenda-
tion systems. MMGCN [39] constructs modality-specific user-item
interaction graphs to model user preferences specific to each modal-
ity. Following MMGCN, GRCN [38] utilizes multimodal features
to refine user-item interaction graphs by identifying false-positive
feedbacks and prunes the corresponding noisy edges.

Despite their effectiveness, previous attempts fail to explicitly
model item relationships, which have been proved to be impor-
tant in recommender systems [31]. Specifically, the majority of
previous work concentrates on modeling user-item interactions
by constructing better interaction graphs or designing sophisti-
cated user-item aggregation strategies, following the traditional
CF paradigm. Therefore, only collaborative item relationships are


https://doi.org/10.1145/3474085.3475259
https://doi.org/10.1145/3474085.3475259

—— Collaborative relation

- -- Semantic relation

Figure 1: A toy example of recommendation with two types
of item relations. In this paper, we argue that semantic struc-
tures mined from multimodal features are helpful for com-
prehensively discovering candidate items supplementary to
collaborative signals in traditional work.

implicitly discovered through modeling high-order item-user-item
co-occurrences, which potentially leads to a gap to the genuine
item-item relations that carry semantic relationships. Taking Figure
1 as an example, existing methods will recommend the shirt (¢)
for uy according to collaborative relationships, since shirts (&),
hats (), and pants (1)) all interacted with u;. However, previous
work may not be able to recommend coats () to up, which are
visually similar to shirts. Considering that items are associated
with rich multimodal features, the latent connections underlying
multimodal contents would facilitate learning better item repre-
sentations and assist the recommender models to comprehensively
discover candidate items.

Towards this end, we propose a novel LATent sTructure mining
scheme for multImodal reCommEndation, LATTICE for brevity. As
shown in Figure 2, the proposed LATTICE consists of three key
components. Firstly, we develop a novel modality-aware structure
learning layer, which learns modality-aware item structures from
multimodal features and aggregates modality-aware item graphs
to construct latent multimodal item graphs. After that, we perform
graph convolutions on the learned latent graphs to explicitly con-
sider item relationships. The resulting item representations are thus
infused with high-order item relationships, which will be added
into the output item embeddings of CF models. Please kindly note
that distinct from previous work that leverages raw features of mul-
timodal contents as side information in addition to ID embeddings,
in our work, multimodal features are only used to learn graph struc-
tures, and graph convolutions are employed on ID embeddings to
directly model item-item affinities.

The LATTICE model enjoys two additional benefits. Firstly, pre-
vious work that leverages multimodal features to model user-item
interactions faces the cold-start problem, when limited user-item
interactions are provided. Our work, on the contrary, mines latent
item graph structures from multimodal features. Even with lim-
ited interactions, items will get similar feedbacks from relevant
neighbors through neighborhood aggregation. Secondly, unlike
previous attempts which design sophisticated user-item aggrega-
tion strategies, LATTICE is agnostic to downstream CF methods.
Therefore, it could be served as a play-and-plug module for existing
recommender models.

In summary, the main contribution of this work is threefold.

e We highlight the importance of explicitly exploiting item re-
lationships in multimedia recommendation, which are help-
ful for discovering comprehensive candidate items.

e We propose a novel framework for multimedia recommen-
dation to mine latent relationships beneath multimodal fea-
tures, which supplement the collaborative signals modeled
by traditional CF methods.

e We perform extensive experiments on three public datasets
to validate the effectiveness of our proposed model.

To foster reproducible research, our code is made publicly available
at https://github.com/CRIPAC-DIG/LATTICE.

2 THE PROPOSED METHOD

In this section, we first formulate the problem and introduce our
model in detail. As illustrated in Figure 2, there are three main com-
ponents in our proposed framework: (1) a modality-aware graph
structure learning layer that learns item graph structures from
multimodal features and fuses multimodal graphs, (2) graph con-
volutional layers that learn the embeddings by injecting item-item
affinities, and (3) downstream CF methods.

2.1 Preliminaries

Let U, I denote the set of users and items, respectively. Each user
u € U is associated with a set of items 7% with positive feedbacks
which indicate the preference score y,; = 1 fori € 7% x,,x; € R4
is the input ID embedding of u and i, respectively, where d is the
embedding dimension. Besides user-item interactions, multimodal
features are offered as content information of items. We denote the
modality features of item i as e]" € R where d,, denotes the
dimension of the features, m € M is the modality, and M is the
set of modalities. The purpose of multimodal recommendation is to
accurately predict users’ preferences by ranking items for each user
according to predicted preference scores fy;. In this paper, we
consider visual and textual modalities denoted by M = {v, t}. Please
kindly note that our method is not fixed to the two modalities and
multiple modalities can be involved.

2.2 Modality-aware Latent Structure Learning

Multimodal features provide rich and meaningful content infor-
mation of items, while existing methods only utilize multimodal
features as side information for each item, ignoring the important
semantic relationships of items underlying features. In this section,
we introduce how to discover the underlying latent graph struc-
ture of item graphs in order to learn better item representations.
To be specific, we first construct initial k-nearest-neighbor (kNN)
modality-aware item graphs by utilizing raw multimodal features.
After that, we learn the latent graph structures from transformed,
high-level features based on the initial graph. Finally, we integrate
the latent graphs from multiple modalities in an adaptive way.

2.2.1 Constructing initial K NN modality-aware graphs. We first con-
struct initial kNN modality-aware graph $™ by using raw features
for each modality m. Based on the hypothesis that similar items
are more likely to interact than dissimilar items [27], we quantify
the semantic relationship between two items by their similarity.
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Figure 2: The overall framework of our proposed LATTICE model. We first learn modality-aware item graphs and aggregate
multiple modalities in an adaptive manner. Based on the mined latent graphs, we conduct graph convolutions to inject high-order
item relationships into item embeddings, which are then combined with downstream CF methods to make recommendations.

Common options for node similarity measurement include cosine
similarity [37], kernel-based functions [22], and attention mecha-
nisms [5]. Our method is agnostic to similarity measurements, and
we opt to the simple and parameter-free cosine similarity in this

paper. The similarity matrix §™ € RN*N is computed by
m\T _ m
m_ (ei)—ej (1)
Yo e e

Typically, the graph adjacency matrix is supposed to be non-negative
but S;; ranges between [~1, 1]. Thus, we suppress its negative en-
tries to zeros. Moreover, common graph structures are much sparser
other than a fully-connected graph, which is computationally de-
manding and might introduce noisy, unimportant edges [5]. For this
purpose, we conduct kNN sparsification [2] on the dense graph: for
each item i, we only keep edges with the top-k confidence scores:

m = {SZ'L ’
)
0,

where $™ is the resulting sparsified, directed graph adjacency ma-
trix. To alleviate the exploding or vanishing gradient problem [21],
we normalize the adjacency matrix as:

SZ? € top-k(S1"),

otherwise,

@)

~ 1~ 1
§"=(D™)"2s" (D)2, ®)
where D™ € RN*N s the diagonal degree matrix of $™ and D! =
m
;S i
2.2.2  Learning latent structures. Although we have obtained the
modality-aware initial graph structures S by utilizing raw multi-
modal features, they may not be ideal for the recommendation task.
This is because the raw multimodal features are often noisy or even
incomplete due to the inevitably error-prone data measurement
or collection. Additionally, initial graphs are constructed from the
original multimodal features, which may not reflect the genuine

graph structures after feature extraction and transformation. To
this end, we propose to dynamically learn the graph structures by

transformed, high-level multimodal features and combine learned
structures with initial structures.
Firstly, we transform raw modality features into high-level fea-
tures e:
e =Wpel + by, (4)

where W,,, € R4 *dm and by € R denote the trainable transfor-
mation matrix and bias vector, respectively. d’ is the dimension of
high-level feature vector €. We then dynamically infer the graph
structures utilizing e, repeat the graph learning process described
in Egs. (1, 2, 3) and obtain the adjacency matrix Am,

Although the initial graph could be noisy, it typically still carries
rich and useful information regarding item graph structures. Also,
drastic change of adjacency matrix will lead to unstable training. To
keep rich information of initial item graph and stabilize the training
process, we add a skip connection that combines the learned graph
with the initial graph:

A" = A8+ (1- DA™, (5)

where A € (0, 1) is the coefficient of skip connection that controls
the amount of information from the initial structure. The obtained
A™ is the final graph adjacency matrix representing latent struc-
tures for modality m. It is worth mentioning that both ™ and A™
are sparsified and normalized matrices, thus the final adjacency ma-
trix A™ is also sparsified and normalized, which is computationally
efficient and stabilizes gradients.

2.2.3 Aggregating multimodal latent graphs. After we obtained
modality-aware adjacency matrix A™ for each modality m € M,
in this section, we explore how to fuse different modalities to com-
pute the final latent structures. In multimedia recommendation,
users usually focus on different modalities in different scenarios.
For example, one may pay more attention to visual modality when
selecting clothes, while focusing more on textual information when
picking books, we thus introduce learnable weights to assign differ-
ent importance scores to modality-specific graphs in an adaptive



way:

A= Z amA™, (6)

m=0
where ay, is the importance score of modality m and A € RN*N s
the graph that represents multimodal item relationships. We apply
the softmax function to keep the adjacency matrix A normalized,

such that err/l\:(l am = 1.

2.3 Graph Convolutions

After obtained the latent structures, we perform graph convolution
operations to learn better item representations by injecting item-
item affinities into the embedding process. Graph convolutions
can be treated as message propagating and aggregation. Through
propagating the item representations from its neighbors, one item
can aggregate the information within the first-order neighborhood.
Furthermore, by stacking multiple graph convolutional layers, the
high-order item-item relationships can be captured.

Following He et al. [14], Wu et al. [40], we employ simple mes-
sage passing and aggregation without feature transformation and
non-linear activations which is effective and computationally effi-
cient. In the I-th layer, the message passing and aggregation could

be formulated as:
Ag > A,,-hﬁ.l‘”, @)
JeEN(i)

where N (i) is the neighbor items and hgl) € R? is the I-th layer
item representation of item i. We set the input item representation
hgo) as its corresponding ID embedding vector x;. We utilize ID
embeddings of items as input representations rather than multi-
modal features, since we employ graph convolutions in order to
directly capture item-item affinities. After stacking L layers, th)
encodes the high-order item-item relationships that are constructed
by multimodal information and thus can benefit the downstream
CF methods.

2.4 Combining with Collaborative Filtering

Different from previous attempts which design sophisticated user-
item aggregation strategies, LATTICE learns item representations
from multimodal features and then combine them with downstream
CF methods that model user-item interactions. It is flexible and
could be served as a play-and-plug module for any CF methods.

We denote the output user and item embeddings from CF meth-
ods as X, %; € R? and simply enhance item embeddings by adding
normalized item embeddings th) learned through item graph:
hH

A ®)
1)1,

We then compute the user-item preference score by taking inner
product of user embeddings and enhanced item embeddings:

Jui = X, %i. ©)

We conduct experiments in Section 3.3 on different downstream

CF methods. The play-and-plug paradigm separates the usage of
multimodal features with user-item interactions, thus alleviating

Table 1: Statistics of the datasets

Dataset! #Users #Items # Interactions Density

Clothing 39,387 23,033 237,488 0.00026
Sports 35,598 18,357 256,308 0.00039
Baby 19,445 7,050 139,110 0.00101

! Datasets can be accessed at http://jmcauley.ucsd.edu/data/amazon/links.
html.

the cold-start problem, where tailed items are only interacted with
few users or even never interacted with users. We learn latent
structures for items and the tailed items will get similar feedbacks
from relevant neighbors through neighborhood aggregation. We
conduct experiments in cold-start settings in Section 3.2 which
proves the effectiveness of this play-and-plug paradigm.

2.5 Optimization

We adopt Bayesian Personalized Ranking (BPR) loss [30] to com-
pute the pair-wise ranking, which encourages the prediction of an
observed entry to be higher than its unobserved counterparts:

LppRr = — Z Z Z In o (Gui — Guj) (10)

ueUiel, j¢I,

where 7% indicates the observed items associated with user u and
(u, 1, j) denotes the pairwise training triples where i € 7' is the pos-
itive item and j ¢ 7" is the negative item sampled from unobserved
interactions. o(+) is the sigmoid function.

3 EXPERIMENTS

In this section, we conduct experiments on three widely used real-
world datasets to answer the following research questions:

e RQ1: How does our model perform compared with the state-
of-the-art multimedia recommendation methods and other
CF methods in both warm-start and cold-start settings?

e RQ2: How effective are the item graph structures learned
from multimodal features?

e RQ3: How sensitive is our model under the perturbation of
several key hyper-parameters?

3.1 Experiments Settings

3.1.1 Datasets. We conduct experiments on three categories of
widely used Amazon dataset introduced by McAuley et al. [26]:
(a) Clothing, Shoes and Jewelry, (b) Sports and Outdoors, and (c)
Baby, which we refer to as Clothing, Sports, and Baby in brief.
The statistics of these three datasets are summarized in Table 1. The
three datasets include both visual and textual modalities. We use
the 4,096-dimensional visual features that have been extracted and
published. For the textual modality, we extract textual embeddings
by concatenating the title, descriptions, categories, and brand of
each item and utilize sentence-transformers [29] to obtain 1,024-
dimensional sentence embeddings.

3.1.2  Baselines. To evaluate the effectiveness of our proposed
model, we compare it with several state-of-the-art recommenda-
tion models. These baselines fall into two groups: CF methods (i.e.
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Clothing Sports Baby
Model
R@20 P@20 NDCG@20 R@20 P@20 NDCG@20 R@20 P@20 NDCG@20

MF 0.0191  0.0010 0.0088 0.0430  0.0023 0.0202 0.0440  0.0024 0.0200
NGCF 0.0387  0.0020 0.0168 0.0695  0.0037 0.0318 0.0591  0.0032 0.0261
LightGCN  0.0470  0.0024 0.0215 0.0782  0.0042 0.0369 0.0698  0.0037 0.0319
VBPR 0.0481  0.0024 0.0205 0.0582  0.0031 0.0265 0.0486  0.0026 0.0213
MMGCN  0.0501 0.0024 0.0221 0.0638  0.0034 0.0279 0.0640  0.0032 0.0284
GRCN 0.0631  0.0032 0.0276 0.0833  0.0044 0.0377 0.0754  0.0040 0.0336
LATTICE 0.0710 0.0036 0.0316 0.0915 0.0048 0.0424 0.0829 0.0044 0.0368

Improv. 12.5% 12.2% 14.6% 9.8% 8.7% 12.5% 9.9% 9.2% 9.5%

Table 2: Performance comparison of our LATTICE with different baselines in terms of Recall@20 (R@20), Precision@20 (P @20),
and NDCG@20. The best performance is highlighted in bold and the second to best is highlighted by underlines. Improv.
indicates relative improvements over the best baseline in percentage. All improvements are significant with p-value < 0.05.

MF, NGCF, LightGCN) and deep content-aware recommendation
models (i.e. VBPR, MMGCN, GRCN).

e MF [30] optimizes Matrix Factorization using the Bayesian
personalized ranking (BPR) loss, which exploits the user-
item direct interactions only as the target value of interaction
function.

o NGCEF [36] explicitly models user-item interactions by a bi-
partite graph. By leveraging graph convolutional operations,
it allows the embeddings of users and items interact with
each other to harvest the collaborative signals as well as
high-order connectivity signals.

o LightGCN [14] argues the unnecessarily complicated de-
sign of GCNs (i.e. feature transformation and nonlinear ac-
tivation) for recommendation systems and proposes a light
model which only consists of two essential components: light
graph convolution and layer combination.

e VBPR [13]: Based upon the BPR model, it integrates the vi-
sual features and ID embeddings of each item as its represen-
tation and feed them into Matrix Factorization framework.
In our experiments, we concatenate multi-modal features as
the content information to predict the interactions between
users and items.

o MMGCN [39] is one of the state-of-the-art multimodal rec-
ommendation methods, which constructs modal-specific
graphs and refines modal-specific representations for users
and items. Tt aggregates all model-specific representations
to obtain the representations of users or items for prediction.

e GRCN [38] is also one of the state-of-the-arts multimodal
recommendation methods. It refines user-item interaction
graph by identifying the false-positive feedback and prunes
the corresponding noisy edges in the interaction graph.

3.1.3  Evaluation protocols. We conduct experiments in both warm-
start and cold-start settings.

Warm-start settings. For each dataset, we select 80% of his-
torical interactions of each user to constitute the training set, 10%
for validation set, and the remaining 10% for testing set. For each
observed user-item interaction, we treat it as a positive pair, and

then conduct the negative sampling strategy to pair them with one
negative item that the user does not interact before.

Cold-start settings. We remove all user-item interaction pairs
associated with a randomly selected 20% item set from the training
set. We further divide the half of the items (10%) into the validation
set and half (10%) into the testing set. In other words, these items
are entirely unseen in the training set.

We adopt three widely-used metrics to evaluate the performance
of preference ranking: Recall@k, NDCG@k, and Precision@k. By
default, we set k = 20 and report the averaged metrics for all users
in the testing set.

3.1.4 Implementation details. We implemente our method in Py-
Torch [28] and set the embedding dimension d fixed to 64 for all
models to ensure fair comparison. We optimize all models with the
Adam [20] optimizer, where the batch size is fixed at 1024. We use
the Xavier initializer [10] to initialize the model parameters. The
optimal hyper-parameters are determined via grid search on the val-
idation set: the learning rate is tuned amongst {0.0001, 0.0005, 0.001,
0.005}, the coefficient of £, normalization is searched in {0, 1075,
1074, 10_3}, and the dropout ratio in {0.0,0.1, - - - , 0.8}. Besides, we
stop training if Recall@20 on the validation set does not increase
for 10 successive epochs to avoid overfitting.

3.2 Performance Comparison (RQ1)

We start by comparing the performance of all methods, and then
explore how the item graph structures learned from multimodal
features alleviate the cold-start problem. In this subsection, we com-
bine our method with LightGCN as downstream CF method, and
will also conduct experiments of different CF methods in Section
3.3.

3.2.1 Overall performance. Table 2 reports the performance com-
parison results, from which we can observe:

o Our method significantly outperforms both CF methods and
content-aware methods, verifying the effectiveness of our
method. Specifically, our method improves over the strongest
baselines in terms of Recall@20 by 12.5%, 9.8%, and 9.9% in
Clothing, Sports, and Baby, respectively. This indicates our



Clothing Sports Baby
Model
R@20 P@20 NDCG@20 R@20 P@20 NDCG@20 R@20 P@20 NDCG@20

MF 0.0191 0.0010 0.0088 0.0430 0.0023 0.0202 0.0440 0.0024 0.0200
MF+feats 0.0456 0.0023 0.0197 0.0674 0.0036 0.0304 0.0701  0.0037 0.0306
LATTICE/feats-MF 0.0519 0.0026 0.0224 0.0708 0.0038 0.0319 0.0729  0.0037 0.0326
LATTICE-MF 0.0577 0.0029 0.0246 0.0753  0.0040 0.0336 0.0767 0.0040 0.0339
Improv. 26.5%  25.9% 24.7% 11.7%  11.4% 10.7% 9.4% 9.4% 10.6%

NGCF 0.0387  0.0020 0.0168 0.0695 0.0037 0.0318 0.0591 0.0032 0.0261
NGCF+feats 0.0436 0.0022 0.0190 0.0748 0.0040 0.0344 0.0660 0.0035 0.0295
LATTICE/feats—-NGCF 0.0480 0.0024 0.0212 0.0849 0.0043 0.0374 0.0713  0.0037 0.0307
LATTICE-NGCF 0.0488 0.0025 0.0216 0.0856  0.0045 0.0381 0.0727  0.0039 0.0313
Improv. 12.0% 11.9% 13.7% 14.5% 14.2% 10.9% 10.1% 9.4% 6.0%
LightGCN 0.0470 0.0024 0.0215 0.0782  0.0042 0.0369 0.0698 0.0037 0.0319
LightGCN+feats 0.0477 0.0024 0.0208 0.0754 0.0040 0.0350 0.0793  0.0042 0.0344
LATTICE/feats-Light GCN  0.0643  0.0033 0.0288 0.0832  0.0044 0.0386 0.0756  0.0040 0.0335
LATTICE-LightGCN 0.0710 0.0036 0.0316 0.0915 0.0048 0.0424 0.0836 0.0044 0.0373
Improv. 48.8%  48.4% 52.0% 213%  20.5% 21.3% 5.4% 5.2% 8.3%

Table 3: Performance of our proposed LATTICE on top of different downstream collaborative filtering (CF) methods. Improv.
indicates relative improvements in percentage over the base CF model with multimodal features (CF+feats).

proposed method is well-designed for multimodal recom-
mendation by discovering underlying item-item relation-
ships from multimodal features.

e Compared with CF methods, content-aware methods yield
better performance overall, which indicates that multimodal
features provide rich content information about items, and
can boost recommendation accuracies. GRCN outperforms
other baselines in three datasets since it discovers and prunes
false-positive edges in user-item interaction graphs. Despite
the sophisticated designed mechanisms, GRCN is still subop-
timal compared to LATTICE, which verifies the importance
of explicitly capturing item-item relationships.

e Additionally, existing content-aware recommendation mod-
els are highly dependent on the representativeness of mul-
timodal features and thus obtain fluctuating performances
over different datasets. For Clothing dataset where visual fea-
tures are very important in revealing item attributes [13, 24],
VBPR, MMGCN, and GRCN outperform all CF methods, in-
cluding the powerful LightGCN. For the other two datasets
where multimodal features may not directly reveal item at-
tributes, content-aware methods obtain relatively small im-
provements. The performances of VBPR and MMGCN are
even inferior to CF method LightGCN. Different from exist-
ing content-aware methods, we discover the latent item rela-
tionships underlying multimodal features instead of directly
using them as side information. The latent item relationships
are less dependent on the representativeness of multimodal
features, and thus we are able to obtain better performance.

3.2.2  Performance in cold-start settings. The cold-start problem
remains a prominent challenge in recommendation systems [32].
Multimodal features of items provide rich content information,
which can be exploited to alleviate the cold-start problem. We
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Figure 3: Performances of our method with different base-
lines in cold-start settings.

conduct cold start experiments and compare with representative
baselines. Figure 3 reports the results of performance comparison,
from which we can observe:

e LATTICE can alleviate cold-start problem and outperforms
all baselines in three datasets. We learn item graphs from
multimodal features, along which cold-start items will get
similar feedbacks from relevant neighbors through neigh-
borhood aggregation.

e CF methods MF and LightGCN obtain poor performance
under cold-start settings in general, primarily because they
only leverage users’ feedbacks to predict the interactions
between users and items. Although these methods may work
well for items with sufficient feedbacks, they cannot help in
cold-start settings, since no user-item interaction is available
to update the representations of cold-start items.

e Content-aware model VBPR outperforms CF methods in
general, which indicates the content information provided by
multimodal features benefits recommendation for cold-start
items. In particular, content information can help bridge the



gap between the existing items to cold-start items. However,
some graph-based content-aware methods such as GRCN,
although performs well in warm-start settings, obtains poor
performance in cold-start settings. GRCN utilizes multimodal
features on user-item interaction bipartite graphs, which is
also heavily dependent on user-item interactions. For cold-
start items, they never interacted with users and become
isolated nodes in the user-item graphs, leading to inferior
performance.

3.3 Ablation Studies (RQ2)

In this subsection, we combine LATTICE with three common-used
CF methods, i.e. MF, NGCF, and LightGCN to validate the effective-
ness of our proposed method. For each CF method, we have three
other variants: the first one is combined with our original method,
employs graph convolutions on ID embeddings as described in Sec-
tion 2.3, named LATTICE-CEF; the second is LATTICE/feats—CF,
which employs graph convolutions on multimodal features instead
of ID embeddings; the third is named as CF+feats, which does
not consider latent item-item relationships and directly uses trans-
formed multimodal features to replace the item representations
learned from item graphs in Eq. (8). Table 3 summarizes the per-
formance and the relative improvements gained by LATTICE-CF
over CF+feats, from which we have the following observations:

o Our method significantly and consistently outperforms orig-
inal CF methods and other two variants with all three CF
methods, which verifies the effectiveness of discovering la-
tent structures and the flexibility of our plug-in paradigm.
Specifically, we obtain 17.6% average improvements over
the CF+feats variants, which directly utilize multimodal
features as side information of items.

Based on the learned item graph structures, LATTICE/feats
— CF employs graph convolutions on multimodal features.
Our original method LATTICE-CF utilizes the same learned
structures but employ graph convolutions on item ID em-
beddings, which aims to directly model item affinities. The
improvements between two variants validate the effective-
ness explicitly modeling item affinities. Multimodal features
are used to bridge semantic relationships between items,
which is important but not explicitly considered by existing
methods.

3.4 Sensitivity Analysis (RQ3)

Since the graph structure learning layer plays a pivotal role in our
method, in this subsection, we conduct sensitive analysis with dif-
ferent hyperparameters on graph structure learning layers. Firstly,
we investigate performance of LATTICE-LightGCN with respect
tor different k value of the k-NN sparsification operation since k
value is important which determines the number of neighbors of
each item, and controls the amount of information propagated from
neighbors. Secondly, we discuss how the skip connection coefficient
A affects the performance which controls the amount of information
the from initial graph topology.

3.4.1 Impact of varied k values. Figure 4 reports the results of
performance comparison. k = 0 means no item relationships are
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Figure 4: Performances comparison over different hyperpa-
rameters settings.

included and the model is degenerated to original LightGCN. We
have the following observations:

e Our method gains significant improvement between k = 0
and k = 10, which validates the rationality of item relation-
ships mined from multimodal features. Even if only a small
part of the neighbors are included, we can obtain better item
representations by aggregating meaningful and important
information, which boost the recommendation performance.

e Furthermore, the performance first imporves as k increases,
which verifies the effectiveness of information aggregation
along item-item graphs since more neighbors bring more
meaningful information that helps to make more accurate
recommendations.

e The trend, however, declines when k continues to increase,
since there may exist many unimportant neighbors that will
inevitably introduce noisy to the information propagation.
This demonstrates the necessity of conducting kNN sparsifi-
cation on the learned dense graph.

3.4.2  Impact of varied coefficients A. Figure 4 reports the perfor-
mance comparison. A = 0 means only consider the graph structure
learned by the transformed high-level multimodal features, and



A = 1 means we only consider the structure generated by the raw
multimodal features. We have the following observations:

e When we set A = 0, the model obtain poor performance. It
only learns graph structure from the transformed high-level
features, completely updating the adjacency matrix every
time, resulting in fluctuated training process.

o The performance first grows as A becomes larger, validating
the importance of initial structures constructed by raw mul-
timodal features. However, it begins to deteriorate when A
continues to increase, since raw features are often noisy due
to the inevitably error-prone data measurement or collection
process.

e Overall, there are no apparent sharp rises and falls, indicat-
ing that our method is not that sensitive to the selection
of 1. Notably, all models surpass the baselines (c.f. Table 2),
proving the effectiveness of item graphs.

4 RELATED WORK
4.1 Multimodal Recommendation

Collaborative filtering (CF) has achieved great success in recommen-
dation systems, which leverage users’ feedbacks (such as clicks and
purchases) to predict the preference of users and make recommen-
dations. However, CF-based methods suffer from sparse data with
limited user-item interactions and rarely accessed items. To address
the problem of data sparsity, it is important to exploit other informa-
tion besides user-item interactions. Multimodal recommendation
systems consider massive multimedia content information of items,
which have been successfully applied to many applications, such as
e-commerce, instant video platforms, and social media platforms
[7, 12, 26, 34].

For example, VBPR [13] extends matrix factorization by incor-
porating visual features extracted from product images to improve
the performance. DVBPR [18] attempts to jointly train the image
representation as well as the parameters in a recommender model.
Sherlock [11] incorporates categorical information for recommen-
dation based on visual features. DeepStyle [24] disentangles cat-
egory information from visual representations for learning style
features of items and sensing preferences of users. ACF [3] in-
troduces an item-level and component-level attention model for
inferring the underlying users’ preferences encoded in the implicit
user feedbacks. VECF [4] models users’ various attentions on differ-
ent image regions and reviews. MV-RNN [6] uses multimodal fea-
tures for sequential recommendation in a recurrent framework. Re-
cently, Graph Neural Networks (GNNs) have been introduced into
recommendation systems [36, 41, 46] and especially multimodal
recommendation systems [23, 38, 39]. MMGCN [39] constructs
modal-specific graph and conduct graph convolutional operations,
to capture the modal-specific user preference and distills the item
representations simultaneously. In this way, the learned user repre-
sentation can reflect the users’ specific interests on items. Following
MMGCN, GRCN [38] focuses on adaptively refining the structure
of interaction graph to discover and prune potential false-positive
edges.

The above methods directly utilize multimodal features as side
information of each item. In our model, we step further by discover-
ing fine-grained item-item relationships from multimodal features.

4.2 Deep Graph Structure Learning

GNN s have shown great power on analyzing graph-structured data
and have been widely employed for graph analytical tasks across a
variety of domains, including node classification [21, 50, 51], link
prediction [45], information retrieval[44, 47], etc. However, most
GNN methods are highly sensitive to the quality of graph struc-
tures and usually require a perfect graph structure that are hard to
construct in real-world applications [8]. Since GNNs recursively ag-
gregate information from neighborhoods of one node to compute its
node embedding, such an iterative mechanism has cascading effects
— small noise in a graph will be propagated to neighboring nodes,
affecting the embeddings of many others. Additionally, there also
exist many real-world applications where initial graph structures
are not available. Recently, considerable literature has arisen around
the central theme of Graph Structure Learning (GSL), which targets
at jointly learning an optimized graph structure and corresponding
representations. There are three categories of GSL methods: metric
learning [5, 22, 37], probabilistic modeling [8, 25, 48], and direct
optimization approaches [9, 17, 42].

For example, IDGL [5] casts the graph learning problem into
a similarity metric learning problem and leverage adaptive graph
regularization for controlling the quality of the learned graph; DGM
[19] predicts a probabilistic graph, allowing a discrete graph to be
sampled accordingly in order to be used in any graph convolutional
operator. NeuralSparse [48] considers the graph sparsification task
by removing task-irrelevant edges. It utilizes a deep neural network
to learn k-neighbor subgraphs by selecting at most k neighbors
for each node in the graph. We kindly refer to [49] for a recent
overview of approaches for graph structure learning.

In personalized recommendation, although user-item interac-
tions can be formulated bipartite graph naturally, item-item rela-
tions remain rarely explored. To model item relationships explicitly,
we employ metric learning approaches to represent edge weights
as a distance measure between two end nodes, which fits for mul-
timedia recommendation since rich content information can be
included to measure the semantic relationship between two items.

5 CONCLUSION

In this paper, we have proposed the latent structure mining method
(LATTICE) for multimodal recommendation, which leverages graph
structure learning to discover latent item relationships underlying
multimodal features. In particular, we first devise a modality-aware
graph structure learning layer that learns item graph structures
from multimodal features and fuses multimodal graphs. Along the
learned graph structures, one item can receive informative high-
order affinities from its neighbors by graph convolutions. Finally, we
combine our model with downstream CF methods to make recom-
mendations. Empirical results on three public datasets demonstrate
the effectiveness of our proposed model.
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