

Deep Contrastive Multiview Network Embedding

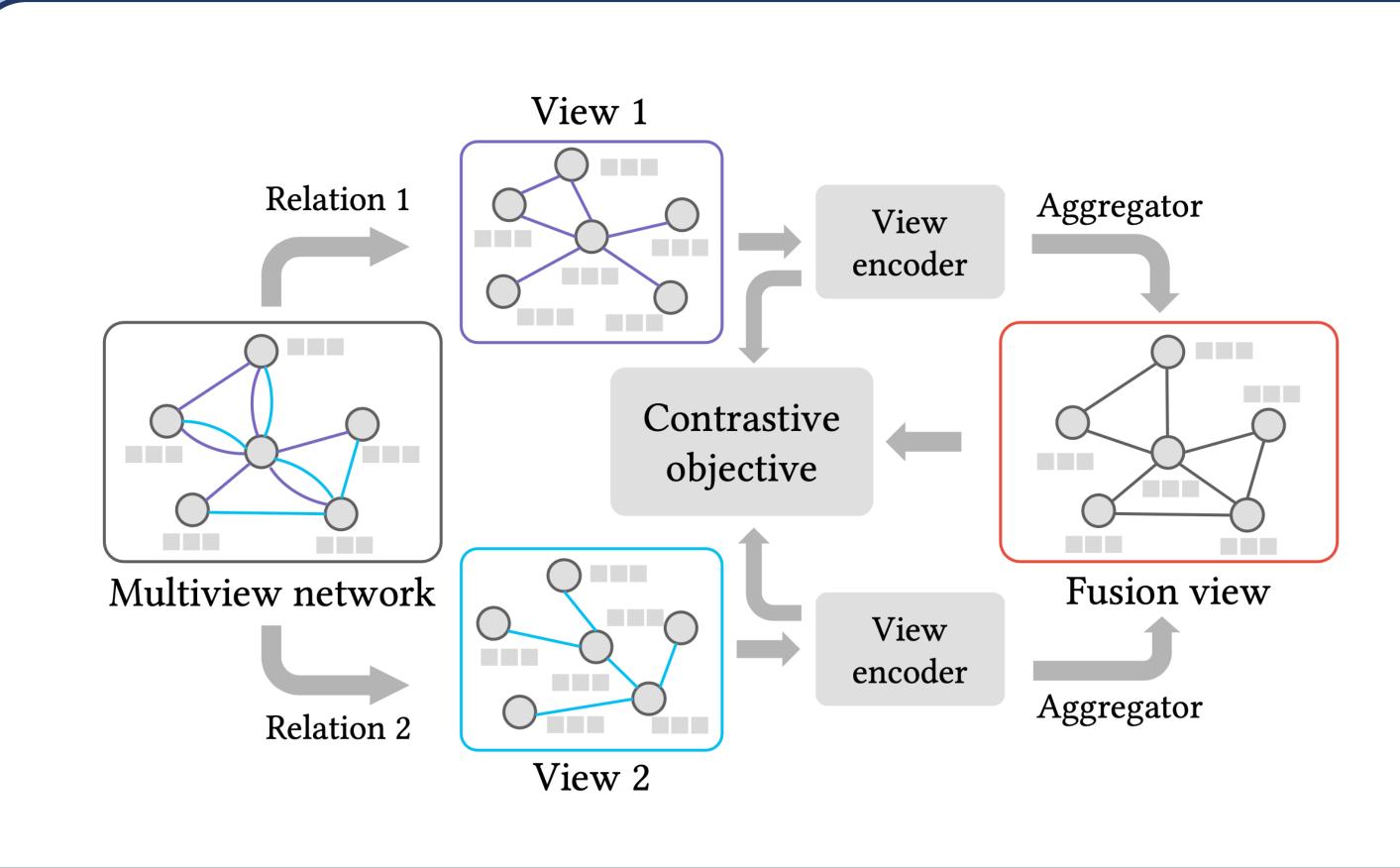
Mengqi Zhang^{*}, Yanqiao Zhu^{*}, Qiang Liu, Shu Wu, Liang Wang Institute of Automation, Chinese Academy of Sciences

★ Multiview Networks Citation View Author View Keyword View ★ Multiview Network Embedding

Motivation

- * Contrastive learning (CL) shows promising performance in multiview network embedding.
- * Existing CL methods neglect the semantic consistency between views in the original network.
- ❖ Furthermore, existing CL methods fail to consider interview dependency, leading to suboptimal performance.

The Proposed Method

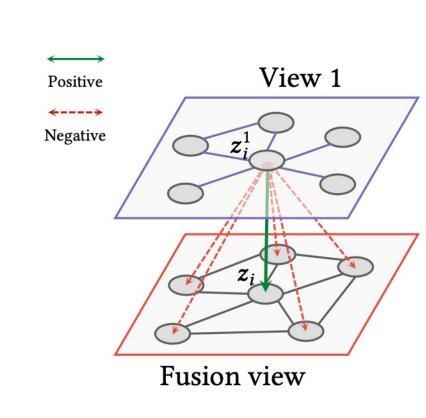


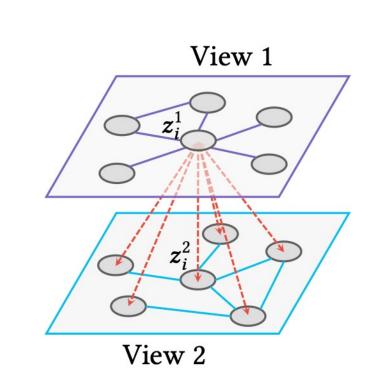
View fusion InfoMax

$$\mathcal{L}_o(\boldsymbol{z}_i^r, \boldsymbol{z}_i) = \log \frac{e^{\theta(\boldsymbol{z}_i^r, \boldsymbol{z}_i)/\tau}}{e^{\theta(\boldsymbol{z}_i^r, \boldsymbol{z}_i)/\tau} + \sum_{j \neq i} e^{\theta(\boldsymbol{z}_i^r, \boldsymbol{z}_j)/\tau} + \sum_{j \neq i} e^{\theta(\boldsymbol{z}_i^r, \boldsymbol{z}_j^r)/\tau}}$$

$$\rho(z_i^r, z_i) = e^{\theta(z_i^r, z_i)/\tau} + \sum_{j \neq i} e^{\theta(z_i^r, z_j)/\tau} + \sum_{j \neq i} e^{\theta(z_i^r, z_j^r)/\tau}$$

$$\mathcal{L}(\boldsymbol{z}_i^r, \boldsymbol{z}_i) = \log \frac{e^{\theta(\boldsymbol{z}_i^r, \boldsymbol{z}_i)/\tau}}{\rho(\boldsymbol{z}_i^r, \boldsymbol{z}_i) + \sum_{j \in \mathcal{G}_k} \mathbb{1}_{[k \neq r]} e^{\theta(\boldsymbol{z}_i^r, \boldsymbol{z}_j^k)/\tau}}.$$





Related Work

Relation reconstruction

- > MVE (Tang et al. 2017), MNE (Zhang et al. 2018)
- > CMNA (Chu et al. 2019), GATNE (Cen et al. 2019)

Contrastive learning

- > DMGI (Park et al. 2020)
- > HDMI (Jing et al. 2021)

Experiments

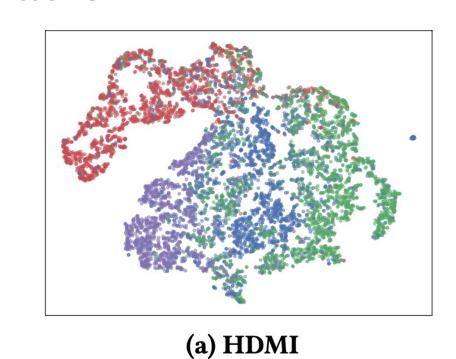
Overall Performance

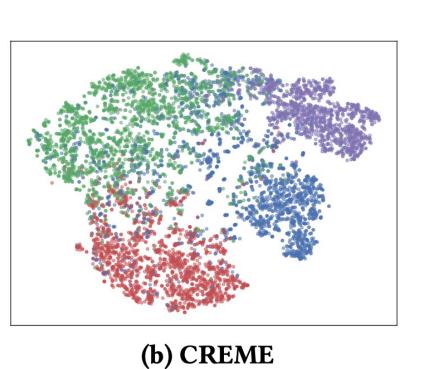
Method	ACM			IMDB			DBLP		
	MaF1	MiF1	NMI	MaF1	MiF1	NMI	MaF1	MiF1	NMI
Deepwalk	0.739	0.748	0.310	0.532	0.55	0.117	0.533	0.537	0.348
node2vec	0.741	0.749	0.309	0.533	0.55	0.123	0.543	0.547	0.382
ANRL	0.819	0.820	0.515	0.573	0.576	0.163	0.770	0.699	0.332
GCN/GAT	0.869	0.870	0.671	0.603	0.611	0.176	0.734	0.717	0.465
DGI	0.881	0.881	0.640	0.598	0.606	0.182	0.723	0.720	0.551
GraphCL	0.892	0.894	0.656	0.613	0.624	0.183	0.736	0.722	0.562
Metapath2vec	0.752	0.758	0.314	0.546	0.574	0.144	0.653	0.649	0.382
HAN	0.878	0.879	0.658	0.599	0.607	0.164	0.716	0.708	0.472
MNE	0.792	0.797	0.545	0.552	0574	0.013	0.566	0.562	0.13
GATNE	0.846	0.841	0.521	0.494	0.504	0.048	0.673	0.665	0.43
DMGI	0.898	0.898	0.687	0.648	0.648	0.196	0.771	0.766	0.409
DMGI-attn	0.887	0.887	0.702	0.602	0.606	0.185	0.778	0.770	0.554
HDMI	0.895	0.894	0.657	0.601	0.610	<u>0.197</u>	0.805	0.795	0.54
CREME	0.907	0.906	0.726	0.672	0.675	0.211	0.812	0.798	0.62

Ablation Studies

Variant	ACM			IMDB			DBLP		
	MaF1	MiF1	NMI	MaF1	MiF1	NMI	MaF1	MiF1	NMI
CRE_V -mean	0.786	0.778	0.394	0.519	0.546	0.056	0.801	0.795	0.516
CRE_V -max	0.824	0.828	0.529	0.551	0.562	0.015	0.810	0.796	0.516
CRE_M -mean	0.896	0.896	0.714	0.672	0.673	0.196	0.803	0.783	0.623
CRE_M -max	0.905	0.899	0.723	0.671	0.674	0.203	0.792	0.780	0.606
CRE_C -ori	0.894	0.893	0.725	0.657	0.661	0.216	0.795	0.775	0.519
CREME	0.907	0.906	0.726	0.672	0.675	0.211	0.812	0.798	0.623

Visualization





Conclusion

- ❖ We have proposed a novel contrastive framework CREME for multiview network embedding
- Our proposed framework contains two collaborative contrastive objectives, view fusion InfoMax and inter-view InfoMin.
- * Extensive experiments on three real-world multiview networks verify the of CREME.