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Click-Through Rate (CTR) Prediction

» Goal: predicting the probability of a user clicking an item

 Applications: computational advertising [Liu et al., 2015] and
recommender systems [Cheng et al., 2016]

* Formal definition: given an input sample x; containing the
user's and item’s features, predict the label y; € {0,1}
representing whether the user will click the item.

[Liu et al., 2015] Qiang Liu et al., A Convolutional Click Prediction Model, in CIKM, 2015.
(Cheng et al., 2016] Heng-Tze Cheng, et al., Wide & Deep Learning for Recommender Systems, in DLRS@RecSys, 2016.
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Feature Interaction for CTR Prediction

 Feature interaction can benefit CTR prediction performance.

« Example: the three-order interaction {Age, Gender, Genre} can be
informative for movie CTR prediction, considering that young men tend
to prefer action movies.

* Problem: impossible to enumerate all combinatorial feature
interaction due to exponential complexity.

* Prior work Autolnt: first embed input features into dense
embeddings and then model arbitrary-order feature interactions
by stacking self-attentive layers.

'Song et al., 2019] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang, Autolnt: Automatic
Feature Interaction Learning via SelfAttentive Neural Networks, in CIKM, 2019.



Self-Attention Networks

- Each self-attentive layer transforms the input dense
embeddings e; € R? into a new embedding space R? by
computing the importance score between features via dot
products and average the embeddings with importance score.
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Motivation

* Recent work in computer vision suggests that the visual feature
interaction can be decomposed into two parts:
 Pairwise score: the pure impact for each feature pair
 Unary score: the general importance of one feature on all features

* In CTR prediction, to better model the influence of each feature
pair, we propose to decouple the pairwise and unary terms from
the vanilla self-attention network.

'Yin et al., 2020] Minghao Yin et al., Disentangled Non-Local Neural Networks, in ECCV, 2020.



An Example of Decoupled Attention

Overall Pairwise Unary
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Decoupled Feature Interaction

 Our disentangled self-attentive module follows the vanilla

attention modules:
M

Zm = Y _aenm, er) - v

k=1

« However, the attention score is decomposed into the pairwise
and unary terms:

&(ema en) — ap(ema en) =+ &u(ema en)
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Decoupled Feature Interaction (cont.)

* Pairwise term: whitened dot product between the key and query
vector

tp(€nsen) = 0 ((@m — )" (kn — )

M
1
* Mg =7 ) W,e; average of the query vectors
1=1

M
1
C = o > Wke; average of the key vectors
j=1
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Decoupled Feature Interaction (cont.)

 Unary term: the dot product between the key vector and
averaged query vector

ay(€m, €n) =0 ((ué)Tkn)

Here p, is an averaged query vector from another query
projection matrix.
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Decoupled Feature Interaction (cont.)

Pairwise term
Key ¢ |OOF—{OO | whiten
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Model Architecture
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Experimental Configurations

 Datasets

Dataset # Instances # Fields # Features Positives

Avazu  40,428.967 23 1,544,488 17%
Criteo 45,840,617 39 998.960 26%
» Baselines:

e First-order method: LR
« Second-order methods: FM, AFM

» Higher-order methods: DeepCrossing, CrossNet, CIN, HOFM and
Autolnt
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Models based on Feature Interaction

Criteo Avazu

Model

AUC  Logloss Time  AUC  Logloss Time
LR 0.7820 0.4695 535.2 0.7560 0.3964 342.6
FM 0.7836  0.4700 391.3 0.7706  0.3856  480.2
AFM 0.7938 0.4584 468.3 0.7718 0.3854 130.7
DeepCrossing  0.8009  0.4513 - 0.7643  0.3889 —
CrossNet 0.7907  0.4591 216.7 0.7667  0.3868 56.3
CIN 0.8009 0.4517 219.0 0.7758 0.3829 179.6
HOFM 0.8005 0.4508 696.2 0.7701 0.3854 903.0
Autolnt 0.8061 0.4455 375.9 0.7752 0.3824 112.6
DESTINE 0.8087 0.4425 477.3 0.7831 0.3789 104.9




Models with DNNs Integrated

Criteo Avazu Avg. Changes
Model
AUC  Logloss AUC  Logloss AUC Logloss
Wide&Deep 0.8026  0.4494  0.7749 0.3824 +0.0292 —-0.0213
DeepFM 0.8066  0.4449  0.7751  0.3829 +0.0142 —0.0113
Deep&Cross 0.8067  0.4447  0.7731 0.3836  +0.0200 —0.0164
xDeepFM 0.8070  0.4447  0.7770  0.3823 40.0068 —0.0096
Autolnt+ 0.8083  0.4434 0.7774  0.3811 +0.0023 —0.0020
DeepIM 0.8044  0.4472  0.7828  0.3809 +40.0165 —0.0138
AutoCTR 0.8104  0.4413  0.7791  0.3800 — —
DESTINE+  0.8118 0.4398 0.7851 0.3779 +0.0026 —0.0019
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Ablation Studies
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Wrapping Up

1.

We present a disentangled self-attention network DESTINE for
CTR prediction, which explicitly disentangles pairwise and
unary semantics.

The unary term models the general impact of one feature on
all others, whereas the remaining whitened pairwise term
models pure feature interaction.

Extensive experiments on two real-world datasets
demonstrate the effectiveness of DESTINE.
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