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Abstract

Graph representation learning nowadays becomes
fundamental in analyzing graph-structured data.
Inspired by recent success of contrastive meth-
ods, in this paper, we propose a novel framework
for unsupervised graph representation learning
by leveraging a contrastive objective at the node
level. Specifically, we generate two graph views
by corruption and learn node representations by
maximizing the agreement of node representa-
tions in these two views. To provide diverse node
contexts for the contrastive objective, we propose
a hybrid scheme for generating graph views on
both structure and attribute levels. We perform
empirical experiments on both transductive and
inductive learning tasks using a variety of real-
world datasets. Experimental experiments demon-
strate that despite its simplicity, our proposed
method consistently outperforms existing state-
of-the-art methods by large margins. Notably, our
method gains about 10% absolute improvements
on protein function prediction. Our unsupervised
method even surpasses its supervised counterparts
on transductive tasks. Code is made publicly avail-
able at https://github.com/CRIPAC-DIG/GRACE.

1. Introduction

Over the past few years, graph representation learning has
emerged as a powerful strategy for analyzing graph data.
Graph representation learning aims to transform nodes to
low-dimensional dense embeddings that preserve graph
attributive and structural features. Traditional unsuper-
vised graph representation learning approaches, such as
DeepWalk (Perozzi et al., 2014) and node2vec (Grover &
Leskovec, 2016), follow a contrastive framework originated
in the skip-gram model (Mikolov et al., 2013). They first
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sample short random walks and then enforce neighboring
nodes on the same walk to share similar embeddings by con-
trasting them with other nodes. However, DeepWalk-based
methods can be seen as reconstructing the graph proximity
matrix, such as high-order adjacent matrix (Qiu et al., 2018),
which excessively emphasize proximity information defined
on the network structure (Ribeiro et al., 2017).

Recently, graph representation learning using Graph Neu-
ral Networks (GNN) has received considerable attention.
Along with its prosperous development, however, there is an
increasing concern over the label availability when training
the model. Nevertheless, existing GNN models are mostly
established in a supervised manner (Kipf & Welling, 2017;
Velickovié et al., 2018; Hu et al., 2019), which require abun-
dant labeled nodes for training. Albeit with some attempts
connecting previous unsupervised objectives (i.e., matrix
reconstruction) to GNN models (Kipf & Welling, 2016;
Hamilton et al., 2017), these methods still heavily rely on
the preset graph proximity matrix.

Instead of optimizing the reconstruction objective, visual
representation learning leads to revitalization of the classi-
cal information maximization (InfoMax) principle (Linsker,
1988). A series of contrastive learning methods have been
proposed so far (Wu et al., 2018; Tian et al., 2019; He et al.,
2020; Bachman et al., 2019; Ye et al., 2019; Chen et al.,
2020), which seek to maximize the Mutual Information
(MI) between the input (i.e., images) and its representations
(i.e., image embeddings) by contrasting positive pairs with
negative-sampled counterparts. Inspired by previous suc-
cess of the Deep InfoMax (DIM) method (Bachman et al.,
2019) in visual representation learning, Deep Graph Info-
Max (DGI) (Velickovi€ et al., 2019) proposes an alternative
objective based on MI maximization in the graph domain.
DGI firstly employs GNN to learn node embeddings and
obtains a global summary embedding (i.e., the graph embed-
ding), via a readout function. The objective used in DGI is
then to maximize the MI between node embeddings and the
graph embedding by discriminating nodes in the original
graph from nodes in a corrupted graph.

However, we argue that the local-global MI maximization
framework in DGI is still in its infancy. Its objective is
proved to be equivalent to maximizing the MI between in-
put node features and high-level node embeddings under
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Figure 1: Our proposed deep GRAph Contrastive rEpresen-
tation learning (GRACE) model.

some conditions. Specifically, to implement the InfoMax
objective, DGI requires an injective readout function to
produce the global graph embedding, where the injective
property is too restrictive to fulfill. For the mean-pooling
readout function employed in DGI, it is not guaranteed that
the graph embedding can distill useful information from
nodes, as it is insufficient to preserve distinctive features
from node-level embeddings. Moreover, DGI proposes to
use feature shuffling to generate corrupted views of graphs.
Nevertheless, this scheme considers corrupting node fea-
tures at a coarse-grained level when generating negative
node samples. When the feature matrix is sparse, perform-
ing feature shuffling only is insufficient to generate different
neighborhoods for nodes in the corrupted graph, leading to
difficulty in learning of the contrastive objective.

In this paper, we introduce a simple yet powerful contrastive
framework for unsupervised graph representation learning
(Figure 1), which we refer to as deep GRAph Contrastive
rEpresentation learning (GRACE), motivated by a tradi-
tional self-organizing network (Becker & Hinton, 1992)
and its recent renaissance in visual representation learning
(Chen et al., 2020). Rather than contrasting node-level em-
beddings to global ones, we primarily focus on contrasting
embeddings at the node level and our work makes no as-
sumptions on injective readout functions for generating the
graph embedding. In GRACE, we first generate two cor-
related graph views by randomly performing corruption.
Then, we train the model using a contrastive loss to max-
imize the agreement between node embeddings in these
two views. In our work, we jointly consider corruption at
both topology and node attribute levels, namely removing
edges and masking features, to provide diverse contexts for
nodes in different views, so as to boost optimization of the
contrastive objective.

2. The Proposed Method

2.1. Preliminaries

In unsupervised graph representation learning, let G =
(V, ) denote a graph, where V = {v1,v9, - ,on}, € C
V x V represent the node set and the edge set respectively.
We denote the feature matrix and the adjacency matrix as
X € RV*Fand A € {0,1}V*N, where =; € RF is the

feature of v;, and A;; = 1 iff (v;,v;) € &. There is no
given class information of nodes in G during training. Our
objective is to learn a GNN encoder f(X, A) € RV*F
receiving the graph features and structure as input, that pro-
duces node embeddings in low dimensionality, i.e., I’ < F.
We denote H = f(X, A) as the learned representations
of nodes, where h; is the embedding of node v;. These
representations can be used in downstream tasks, such as
node classification.

2.2. Contrastive Learning of Node Representations
2.2.1. THE CONTRASTIVE LEARNING FRAMEWORK

Contrary to previous work that learns representations by
utilizing local-global relationships, in GRACE, we learn
embeddings by directly maximizing node-level agreement
between embeddings. In our GRACE model, at each itera-
tion, we generate two graph views, denoted as G 1 and GQ,
and denote node embeddings in the two generated views as
U=f(X1,A1)andV = f(X,,A,), where X, and A,

are the feature matrices and adjacent matrices of the views.

Then, we employ a contrastive objective (i.e., a discrimi-
nator) that distinguishes the embeddings of the same node
in these two different views from other node embeddings.
For any node v;, its embedding generated in one view, u;,
is treated as the anchor, the embedding of it generated in
the other view, v;, forms the positive sample, and embed-
dings of nodes other than v; in the two views are naturally
regarded as negative samples. Formally, we define the critic
O(u,v) = s(g(u), g(v)), where s is the cosine similarity
and g is a non-linear projection to enhance the expression
power of the critic (Chen et al., 2020; Tschannen et al.,
2020). The projection g is implemented with a two-layer
multilayer perceptron (MLP). We define the pairwise objec-
tive for each positive pair (u;, v;) as

K(’U/i, ’1)7;) =
ef(uivi)/7
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M
where 1j,; € {0, 1} is an indication function that equals
to 1iff k = 4, and 7 is a temperature parameter. Please note
that, in our work, we do not sample negative nodes explicitly.
Instead, given a positive pair, we naturally define negative
samples as all other nodes in the two views. Therefore,
negative samples come from two sources, inter-view or
intra-view nodes, corresponding to the second and the third
term in the denominator, respectively. Since two views are
symmetric, the loss for another view is defined similarly
for £(v;, u;). The overall objective to be maximized is then
defined as the average over all positive pairs, i.e.,

N
T=3% 2 o)+ topw)]. @)
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To sum up, at each training epoch, GRACE first generates
two graph views G and G5 of graph g. Then, we obtain
node representations U and V of G; and G, using a GNN
encoder f. Finally, the parameters of f and g is updated by
maximizing the objective in Eq. (2).

2.2.2. GRAPH VIEW GENERATION

Generating views is a key component of contrastive learning
methods. In the graph domain, different views of a graph
provide different contexts for each node. Since contrastive
approaches that rely on contrasting between node embed-
dings in different views, we propose to corrupt the original
graph at both structure and attribute levels, which constructs
diverse node contexts for the model to contrast with. We
design the following two methods for graph corruption.

Removing edges (RE). = We randomly remove a portion
of edges in the original graph. Formally, since we only
remove existing edges, we first sample a random mask-
ing matrix R € {0,1}*" whose entry is drawn from
a Bernoulli distribution R,; ~ B(1 — p,) if A;; = 1 for
the original graph and Eij = 0 otherwise. Here p, is the
probability of each edge being removed. The resulting ad-
jacency matrix can be computed as A = A o R, where
(x oy); = x;y; is Hadamard product.

Masking node features (MF).  Apart from removing
edges, we randomly mask a fraction of dimensions with
zeros in node features. Formally, we first sample a ran-
dom vectorm € {0, 1}¥ where each dimension of it in-
dependently is drawn from a Bernoulli distribution with
probability 1 — p,,, ie., m; ~ B(l — p,),Vi. Then,
the generated node features X is computed by X =
[€; om;zy om;--- ;xy om]T, where [-;-] is the con-
catenation operator.

In our implementation, we jointly leverage these two meth-
ods to generate graph views. The generation of G; and
G o are controlled by two hyperparameters p,- and p,,,. To
provide different contexts in the two views, the generation
process of the two views uses two different sets of hyper-
parameters pr. 1, Pm,1 and p, 2, pm,2. Experiments demon-
strate that our model is not sensitive to the choice of p, and
P, under mild conditions such that the original graph is not
overly corrupted, e.g., p, < 0.8 and p,, < 0.8.

3. Experiments
3.1. Datasets

For comprehensive comparison, we use six widely-used
datasets to study the performance of both transductive and
inductive node classification. Specifically, we use three
kinds of datasets: (1) citation networks including Cora, Cite-
seer, Pubmed, and DBLP (Sen et al., 2008; Bojchevski &

Giinnemann, 2018) for transductive node classification, (2)
social networks from Reddit posts for inductive learning
on large-scale graphs (Hamilton et al., 2017), and (3) bio-
logical protein-protein interaction (PPI) networks (Zitnik &
Leskovec, 2017) for inductive node classification on multi-
ple graphs.

3.2. Experimental Setup

For every experiment, we follow the linear evaluation
scheme as in (Velickovié et al., 2019), where each model is
firstly trained in an unsupervised manner. The resulting em-
beddings are used to train and test a simple ¢5-regularized
logistic regression classifier. We train the model for twenty
runs and report the averaged performance on each dataset.
Moreover, we measure performance using micro-averaged
F1-score on inductive tasks and accuracy on transductive
tasks. Please kindly note that for inductive learning tasks,
tests are conducted on unseen or untrained nodes and graphs,
while for transductive learning tasks, we use the features of
all data, but the labels of the test set are masked.

Transductive learning.  In transductive learning tasks,
we employ a two-layer GCN (Kipf & Welling, 2017) as the
encoder. Our encoder architecture is formally given by

GCy(X,A) =0 (ﬁ—%Ab—%XW,») NG,

where A = A + I is the adjacency matrix with self-loops,
D = > A, is the degree matrix, o(-) is a nonlinear ac-
tivation function, e.g., ReLU(-) = max(0,-), and W is a
trainable weight matrix.

Inductive learning on large graphs.  Considering the
large scale of the Reddit data, we closely follow (Velickovié
et al., 2019) and employ a three-layer GraphSAGE-GCN
(Hamilton et al., 2017) with residual connections (He et al.,
2016) as the encoder, which is formulated as

MP;(X, A) = o([DTAX; X]W)), 5)
f(X, A) = MP3(MP»(MP; (X, A), A), A). (6)

Here we use the mean-pooling propagation rule, as D!
averages over node features. Due to the large scale of Reddit,
it cannot fit into GPU memory entirely. Therefore, we apply
the subsampling method proposed in (Hamilton et al., 2017),
where we first randomly select a minibatch of nodes, then a
subgraph centered around each selected node is obtained by
sampling node neighbors with replacement.

Inductive learning on multiple graphs.  For inductive
learning on multiple graphs PPI, we also apply the mean-
pooling propagation rule with GraphSAGE-GCN, using the
same setting as Reddit. Since the PPI dataset consists of
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Table 1: Summary of performance on node classification
in terms of accuracy in percentage (on transductive tasks)
or micro-averaged F1 score (on inductive tasks). Available
data for each method during the training phase is shown
in the second column, where X, A, Y correspond to node
features, the adjacency matrix, and labels respectively. The
highest performance of unsupervised models is highlighted
in boldface.

(a) Transductive

Method Data Cora Citeseer Pubmed DBLP
Raw feat. X 64.8 64.6 84.8 71.6
node2vec A 74.8 52.3 80.3 78.8
DeepWalk A 75.7 50.5 80.5 75.9

DeepWalk + feat. X, A 73.1 47.6 83.7 78.1
GAE X, A 76.9 60.6 82.9 81.2
VGAE X, A 78.9 61.2 83.0 81.7
DGI X, A 82.6 68.8 86.0 83.2
GRACE X, A 83.3 72.1 86.7 84.2
SGC X,AY 806 69.1 84.8 81.7
GCN X,AY 828 72.0 84.9 82.7
(b) Inductive
Method Data Reddit PPI
Raw features X 58.5 422
DeepWalk A 324 —
DeepWalk + feat. X, A 69.1 —
GraphSAGE-GCN X, A 90.8 46.5
GraphSAGE-mean X, A 89.7 48.6
GraphSAGE-LSTM X, A 90.7 48.2
GraphSAGE-pool X, A 89.2 50.2
DGI X, A 94.0 63.8
GRACE XA 94.2 73.6
FastGCN X, AY 93.7 —
GaAN-mean X,AY 95.8 96.9

multiple graphs, we only compute negative samples for one
anchor node as other nodes within the same graph, due to
efficiency considerations.

Following (Velickovi€ et al., 2019), we include both repre-
sentative traditional and deep learning algorithms as base-
lines. For direct comparison with supervised counterparts,
we also report the performance of related models, where
they are trained in an end-to-end fashion.

3.3. Results and Analysis

The empirical performance is summarized in Table 1. Over-
all, from the table, we can see that our proposed model
shows strong performance across all six datasets. GRACE
consistently performs better than unsupervised baselines by
considerable margins on both transductive and inductive
tasks. The strong performance verifies the superiority of
the proposed contrastive learning framework. We particu-
larly note that GRACE is competitive with models trained

with label supervision on all four transductive datasets and
inductive dataset Reddit.

We make other observations as follows. Firstly, GRACE
achieves over 10% absolute improvement over another com-
petitive contrastive learning method DGI on PPI. We believe
that this is due to the extreme sparsity of node features (over
40% nodes having all-zero features (Hamilton et al., 2017)),
which emphasizes the importance of considering topological
information when choosing negative samples. For datasets
like PPI, extreme feature sparsity prevents DGI from dis-
criminating samples in the original graph from the corrupted
graph, generated via shuffling node features, since shuffling
node features makes no effect for the contrastive objective.
Contrarily, the RE scheme used in GRACE does not rely
on node features and acts as a remedy under such circum-
stances, which can explain the large gain of GRACE on PPI
compared with DGI. Also, we note that there is still a huge
gap between our method with supervised models. These
supervised models benefit another merit from labels, which
provide other auxiliary information for model learning.

Secondly, the performance of traditional contrastive learning
methods like DeepWalk is inferior to the naive classifier that
only uses raw features on some datasets (Citeseer, Pubmed,
and Reddit), which suggests that these methods may be
ineffective in utilizing node features. Unlike traditional
work, we see that GCN-based methods, e.g., GraphSAGE
and GAE, are capable of incorporating node features when
learning embeddings. However, we note that on certain
datasets (Pubmed), their performance is still worse than
DeepWalk + feature, which we believe can be attributed
to their naive method of selecting negative samples that
simply chooses contrastive pairs based on edges. This fact
further demonstrates the important role of selecting negative
samples in contrastive representation learning. The supe-
rior performance of GRACE compared to GAEs also once
again verifies the effectiveness of our proposed GRACE
framework that contrasts nodes across graph views.

4. Conclusion

In this paper, we have developed a novel graph contrastive
representation learning framework based on maximizing the
agreement at the node level. Our model learns representa-
tions by first generating graph views using two proposed
schemes, removing edges and masking node features, and
then applying a contrastive loss to maximize the agreement
of node embeddings in these two views. We have con-
ducted comprehensive experiments using various real-world
datasets under transductive and inductive settings. Experi-
mental results demonstrate that our proposed method can
consistently outperform existing state-of-the-art methods by
large margins and even surpass supervised counterparts on
transductive tasks.
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A. Dataset Details

Transductive learning. We utilize four widely-used cita-
tion networks, Cora, Citeseer, Pubmed, and DBLP, for pre-
dicting article subject categories. In these datasets, graphs
are constructed from computer science article citation links.
Specifically, nodes correspond to articles and undirected
edges to citation links between articles. Furthermore, each
node has a sparse bag-of-words feature and a corresponding
label of article types. The former three networks are pro-
vided by (Sen et al., 2008; Yang et al., 2016) and the latter
DBLP dataset is provided by (Bojchevski & Giinnemann,
2018). On these citation networks, we randomly select 10%
of the nodes as the training set, 10% nodes as the validation
set, and leave the rest nodes as the test set.

Inductive learning on large graphs. We then predict
community structures of a large-scale social network, col-
lected from Reddit. The dataset, preprocessed by (Hamilton
et al., 2017), contains Reddit posts created in September
2014, where posts belong to different communities (sub-
reddit). In the dataset, nodes correspond to posts, and
edges connect posts if the same user has commented on
both. Node features are constructed from post title, content,
and comments, using off-the-shelf GloVe word embeddings
(Pennington et al., 2014), along with other metrics such as
post score and the number of comments. Following the
inductive setting of (Hamilton et al., 2017; Velickovi¢ et al.,
2019), on the Reddit dataset, we choose posts in the first 20
days for training, including 151,708 nodes, and the remain-
ing for testing (with 30% data including 23,699 nodes for
validation).

Inductive learning on multiple graphs. Last, we predict
protein roles, in terms of their cellular functions from gene
ontology, within the protein-protein interaction (PPI) net-
works (Zitnik & Leskovec, 2017) to evaluate the generaliza-
tion ability of the proposed method across multiple graphs.
The PPI dataset contains multiple graphs, with each corre-
sponding to a human tissue. The graphs are constructed
by (Hamilton et al., 2017), where each node has multiple
labels that is a subset of gene ontology sets (121 in total),
and node features include positional gene sets, motif gene
sets, and immunological signatures (50 in total). Following
(Hamilton et al., 2017), we select twenty graphs consisting
of 44,906 nodes as the training set, two graphs contain-
ing 6,514 nodes as the validation, and the rest four graphs

Table 2: Statistics of datasets used in experiments.

Dataset Type #Nodes #Edges #Features  #Classes
Cora Transductive 2,708 5,429 1,433 7
Citeseer  Transductive 3,327 4,732 3,703 6
Pubmed Transductive 19,717 44,338 500 3
DBLP  Transductive 17,716 105,734 1,639 4
Reddit Inductive 231,443 11,606,919 602 41
. 56,944 121
PPI Inductive (24 graphs) 818,716 50 (multilabel)
Table 3: Hypeparameter specifications.
D . i Learning  Weight  Training Hidden Activation
ataset  pm.a Pmz2  Pra Pr2 rate decay epochs dimension function
Cora 0.3 04 02 04 0.005 107° 200 128 ReLU
Citeseer 03 02 02 00 0001 10°° 200 256 PReLU
Pubmed 0.0 0.2 04 0.1 0.001 107° 1,500 256 ReLU
DBLP 0.1 0.0 0.1 04 0.001 107° 1,000 256 ReLU
Reddit 0.3 0.2 0.1 0.2 0.00001 107° 40 512 ELU
PPI 03 04 02 03 0001 10°° 200 128 ReLU

containing 12,038 nodes as the test set.

The statistics of datasets are summarized in Table 2. For
transductive tasks, similar to (Kipf & Welling, 2017), during
the training phase, all node features are visible but node
labels are masked. In the inductive setting, we closely follow
(Hamilton et al., 2017); during training, nodes for evaluation
are completely invisible; evaluation is then conducted on
unseen or untrained nodes and graphs.

B. Hyperparameters

All models are initialized with Glorot initialization (Glorot
& Bengio, 2010), and trained using Adam SGD optimizer
(Kingma & Ba, 2015) on all datasets. The initial learning
rate is set to 0.001 with an exception to 0.0005 on Cora
and 10~° on Reddit. The /» weight decay factor is set to
10~° on all datasets. On both transductive and inductive
tasks, we train the model for a fixed number of epochs,
specifically 200, 200, 1500, 1000 epochs for Cora, Citeseer,
Pubmed and DBLP, respectively, 40 for Reddit and 200 for
PPI. The probability parameters controlling the sampling
process, pr.1,Pm,1 for the first view and p,. 2, py, 2 for the
second view, are all selected between 0.0 and 0.4, since the
original graph will be overly corrupted when the probability
is set too large. Note that to generate different contexts for
nodes in the two views, p,.; and p, 2 should be distinct,
and the same holds for p,, 1 and p,, 2. All dataset-specific
hyperparameters are summarized in Table 3.

C. Additional Experiments
C.1. Sensitivity Analysis

In this section, we perform sensitivity analysis on criti-
cal hyperparameters in GRACE, namely four probabilities
Dm,1;Pr,1,Pm,2, Pr,2 that determine the generation of graph
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Micro-F1

Figure 2: The performance of GRACE with varying differ-
ent hyperparameters in transductive node classification on
the Citeseer dataset in terms of Micro-F1.

views to show the model stability under the perturbation
of these hyperparameters. We conduct trasductive node
classification by varying these parameters from 0.1 to 0.9.
For sake of visualization brevity, we set py = pr1 = Pp.1
and pp = p.2 = Pp,,2. In other words, p; and p» con-
trol the generation of the two graph views. Note that we
only change these four parameters in the sensitivity analysis,
other parameters remain the same as previously described.

The results on the Citeseer dataset is shown are Figure 2.
From the figure, it can be observed that the performance
of node classification in terms of Micro-F1 is relatively sta-
ble when the parameters are not too large, as shown in the
plateau in the figure. We thus conclude that overall, our
model is insensitive to these probabilities, demonstrating
the robustness to hyperparameter tuning. If the probability
is set too large (e.g., > 0.5), the original graph will be heav-
ily undermined. For example, when p, = 0.9, almost every
existing edge has been removed, leading to isolated nodes in
the generated graph views. Then, under such circumstance,
the graph convolutional network is hard to learn useful in-
formation from node neighborhoods. Therefore, the learnt
node embeddings in the two graph views are not distinctive
enough, which will result in difficulty of optimizing the
contrastive objective.

C.2. Ablation Studies

In this section, we perform ablation studies on the two
schemes for generating graph views, removing edge (RE)
and masking node features (MF), to verify the effectiveness
of the proposed hybrid scheme. We denote GRACE (-RE)
as the model without removing edges and GRACE (—MF)
as the model without masking node features. We report
the performance of GRACE (-RE), GRACE (-MF) and the
original model GRACE on transductive node classification
under the identical settings as previous, except for different
enabled schemes. The results are presented in Table 4.

It is seen that our hybrid approach that jointly applies RE
and MF significantly outperform two downgraded models
that only use one standalone method RE or MF. These re-

Table 4: The performance of model variants along with the
original GRACE model in the ablation study in terms of
accuracy of node classification. GRACE (-RE) and GRACE
(-MF) denote the model without removing edges and mask-
ing node features respectively.

Method Cora Citeseer Pubmed DBLP

GRACE 83.2 72.1 86.7 84.2
GRACE (-RE) 823 72.0 84.8 83.6
GRACE (-MF) 81.6 69.9 85.7 83.5

sults verify the effectiveness of our proposed scheme for
graph corruption, and further show the necessity of jointly
considering corruption at both graph topology and node
feature levels.

C.3. Comparison with InfoNCE Loss

In this section, we consider another widely-used objective,
the InfoNCE loss (van den Oord et al., 2018) , in contrastive
methods. For fair comparison, we measure the node similar-
ities between two graph views using the InfoNCE objective,
which is defined as

1
INCE = 3 Unce(V,U) + tnce(V,U)], @)

where the pairwise objective is defined by Ixcg(U, V) £

LS5V log % Inee(V,U) can be defined
symmetrically. The modified model is denoted as GRACE—
NCE hereafter. We report the performance of GRACE-
NCE on transductive node classification under identical
settings as with the original model GRACE. The results are
summarized in Table 5.

From the table, we can clearly see that the performance of
the variant model GRACE-NCE is inferior to that of the
original model GRACE on all four datasets. The results
empirically demonstrate that, although InfoNCE is a stricter
estimator of the mutual information, our objective is more
effective and shows better downstream performance, which
is consistent with previous observations in visual represen-
tation learning (Tschannen et al., 2020). We believe that
the superior performance of our objective compared to In-
foNCE can be attributed to the inclusion of more negative
samples. Specifically, we take intra-view negative pairs into
consideration in our objective, which can be viewed as a
regularization against the smoothing problem brought by
graph convolution operators.

C.4. Robustness to Sparse Features

As discussed before, for existing work DGI, it is relatively
easy to generate negative samples for nodes having dense
features using the feature shuffling scheme. However, when
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Table 5: The performance of GRACE and GRACE-NCE in
transductive node classification on four citation datasets.

Method Cora Citeseer Pubmed DBLP
GRACE 83.2 72.1 86.7 84.2
GRACE-NCE 82.1 70.9 85.0 82.1

80.0% 70.0%
60.0% -
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(c) Pubmed (d) DBLP

Figure 3: The performance of GRACE and DGI in trans-
ductive node classification in terms of Micro-F1 on four
citation datasets with a portion of node features masked
under different masking rates.

node features are sparse, feature shuffling may not be suffi-
cient to generate different neighborhoods for nodes, which
motivates our hybrid scheme that corrupts the original graph
at both topology and attribute levels.

In this section, we conduct experiments with randomly con-
taminating the training data by masking a certain portion of
the node features to zeros. Specifically, we vary the contam-
ination rate of node features from 0.5 to 0.9 on four citation
networks. We conduct experiments on transductive node
classification with all other parameters being the same as
previously described. The performance in terms of accuracy
is plotted in Figure 3.

From the figures, we can see that GRACE consistently out-
performs DGI with large margins under different contamina-
tion rates, demonstrating the robustness of our proposed
GRACE model to sparse features. We attribute the ro-
bustness of GRACE to the superiority of our proposed RE
method for graph corruption at topology level, since RE is
capable of constructing different topology context for nodes
without dependence on node features. These results once
again verify the necessity of considering graph corruption at
both topology and attribute levels. Note that, when a large
portion of node features are masked, e.g., 90% features are

masked, both GRACE and DGI perform poorly. This may
be explained from the fact that, when the node features are
overly contaminated, nodes are highly sparse such that the
GNN model is ineffective to extract useful information from
nodes, leading to performance deterioration.

D. Theoretical Justification

In this section, we provide theoretical justification behind
our model from two perspectives, i.e., the mutual informa-
tion maximization and the triplet loss.

Connections to the mutual information.  Firstly, we re-
veal the connection between our loss and mutual information
maximization between node features and the embeddings
in the two views, which has been widely applied in the rep-
resentation learning literature (Tian et al., 2019; Bachman
et al., 2019; Poole et al., 2019; Tschannen et al., 2020). MI
quantifies the amount of information obtained about one
random variable by observing the other random variable.

Theorem 1. Let X; = {x }repr(i) be the neighborhood
of node v; that collectively maps to its output embedding,
where N (i) denotes the set of neighbors of node v; specified
by GNN architectures, and X be the corresponding random
variable with a uniform distribution p(X;) = 3. Given two
random variables U,V € RF / being the embedding in the
two views, with their joint distribution denoted as p(U, V),
our objective J is a lower bound of MI between encoder
input X and node representations in two graph views U, V.
Formally,

J <I(X;U,V). @®)

Proof. We first show the connection between our objective
J and the InfoNCE objective (van den Oord et al., 2018) ,
which can be defined as (Poole et al., 2019)

ee(ul ,’Ui)

N G'U.L v ’
SN bl

N
1
Ice(U; V) £ EIT, p(uiv0) N Zlog 1
i=1 N

where  the critic  function is  defined as

O(xz,y) = s(g(x),9(y)). We further de-
N

fine  pr(u;) = > j=1 Liizg) exp(0(us, uj)/7),

pe(u;) = Zjvzl exp(f(u;,v;)/7) for convenience

of notation. Note that p,.(v;) and p.(v;) can be defined
symmetrically. Then, our objective [J can be rewritten as

J =

1 X exp(0(u;,v;)/T) :|
Er. p(u; v — lo .
Hip(iwo) [N; & pe(un) £ pr(ui)) (pe(v:) + pr(w2))

()]
Using the notation of p., the InfoNCE estimator Incg can
be written as

M} . a0

1 N
I U,V) =E. N log
NCE(U, V) = Ef; p(uy v) [N Z::l o taD)
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Therefore,

27 = INCE(U,V) — ]Eni p(u;,v;) |: Zlog (1 —+ e ('u, ;):|

pr(vi)\] D
Pe (vi))}

According to (Poole et al., 2019), the InfoNCE estimator is
a lower bound of the true M1, i.e.

+ Ince(V, U) = Eqq; p(uy,vp) [ Zlog (

< Ince(U, V) + Ince(V, U).

Ince(U, V) < I(U; V). (12)
Thus, we arrive at
2J <I(U; V) +1(V;U) =21(U; V),  (13)
which leads to the inequality

J < I(U; V). (14)

According to the data processing inequality, which states
that, for all random variables X, Y, Z satisfying the Markov
relation X — Y — Z, the inequality I(X;Z) < I(X;Y)
holds. Then, we observe that X, U,V satisfy the relation
U + X — V. Since, U and V are conditionally indepen-
dent after observing X, the relation is Markov equivalent
to U — X — V, which leads to I(U; V) < I(U; X). We
further notice that the relation X — (U, V) — U holds,
and hence it follows that I(X;U) < I(X;U,V). Com-
bining the two inequalities yields the required inequality

I(U; V) < I(X; U, V). (15)

Following Eq. (14) and Eq. (15), we finally arrive at in-
equality

J <I1(X;U,V), (16)

which concludes the proof. O

Remark. From Theorem 1, it reveals that maximizing J
is equivalent to maximizing a lower bound of the mutual
information I(X; U, V) between input node features and
learned node representations. Counterintuitively, recent
work further provides empirical evidence that optimizing
a stricter bound of MI may not lead to better downstream
performance on visual representation learning (Tschannen
et al., 2020), which highlights the importance of the encoder
design. In Appendix C.3, we also compare our objective
with the InfoNCE loss, which is a stricter estimator of MI,
to further demonstrate the superiority of the GRACE model.

Connections to the triplet loss.  Alternatively, we may
view the optimization problem in Eq. (2) as a classical
triplet loss, commonly used in deep metric learning.

Theorem 2. When the projection function g is the identity
function and we measure embedding similarity by simply
taking inner product, i.e. s(u,v) = u' v, and further as-
suming that positive pairs are far more aligned than negative
pairs, minimizing the pairwise objective {(u;,v;) coincides
with maximizing the triplet loss, as given in the sequel

N
—0(up,v;) < ANT + > Ly (Hui —wi]? — flui — u_,»|\2)
j=1

an

N

37 b (s = il = s — 1)

j=1

Proof. Based on the assumptions, we can rearrange the
pairwise objective as

exp (u: v,;/T)

—€(u;,v;) = —log
Z’k\;l exp (u;rvk/T) + Z){-\rzl 1k 2i] exp (u;ruk/T)

N
= log (1 + Z Lipo24) €XP ((u;r'vk — u;rvi)/‘r)
k=1

N
+ Z Lgi] exp ((u:uk — u?vi)/f) >
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By Taylor expansion of first order,
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k=1

(19)
which concludes the proof. O

Remark. Theorem 2 draws connection between the objec-
tive and the classical triplet loss. In other words, we may
regard the problem in Eq. (2) as learning graph convolu-
tional encoders to encourage positive samples being further
away from negative samples in the embedding space. More-
over, by viewing the objective from the metric learning
perspective, we highlight the importance of appropriately
choosing negative samples, which is often neglected in pre-
vious InfoMax-based methods. Last, the contrastive objec-
tive is cheap to optimize since we do not have to generate
negative samples explicitly and all computation can be per-
formed in parallel. In contrast, the triplet loss is known to
be computationally expensive (Schroff et al., 2015).
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