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Abstract
Molecular pretraining, which learns molecular representations over massive
unlabeled data, has become a prominent paradigm to solve a variety of tasks
in computational chemistry and drug discovery. Recently, prosperous progress
has been made in molecular pretraining with different molecular featurizations,
including 1D SMILES strings, 2D graphs, and 3D geometries. However, the
role of molecular featurizations with their corresponding neural architectures
in molecular pretraining remains largely unexamined. In this paper, through
two case studies—chirality classification and aromatic ring counting—we first
demonstrate that different featurization techniques convey chemical information
differently. In light of this observation, we propose a simple and effective
MOlecular pretraining framework with COllaborative featurizations (MOCO).
MOCO comprehensively leverages multiple featurizations that complement each
other and outperforms existing state-of-the-art models that solely relies on one or
two featurizations on a wide range of molecular property prediction tasks.

1 Introduction
Molecular representation learning, which automates the process of feature learning for molecules, is
fast driving the development of computational chemistry and drug discovery. It has been recognized
as crucial for a variety of downstream tasks, spanning from molecular property prediction to molecule
design [1, 2]. Deep neural models, on the other hand, rely on a substantial amount of labeled data,
which require expensive wet lab experiments in chemical domains. With insufficient annotated data,
deep models easily overfit to such small training data and tend to learn spurious correlations [3].

In recent years, self-supervised pretraining has emerged as a promising strategy to alleviate the label
scarcity problem and improve model robustness [4]. A typical framework pretrains the encoder
model with training objectives over large-scale unlabeled datasets and then fine-tunes the learned
model on labeled downstream tasks. Motivated by its success, many molecular pretraining models
have been developed [5–12]. To capture chemical semantics of molecules, these models design
several pretraining strategies based on different molecular featurizations, which translate chemical
information into representations that can be recognized by machine learning algorithms. For example,
early models [5, 6] propose to leverage masked language modeling [13] to pretrain Simplified
Molecular-Input Line-Entry System (SMILES) strings [14], while others study contrastive learning
on 2D graphs [7–9] or 3D conformations [10]. Some recent studies further propose to enrich
2D-topology-based pretraining with 3D geometry information [11, 12].
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Figure 1: The proposed MOCO model. MOCO obtains four molecule featurizations with appropriate
encoders. After that, an attention network is employed to aggregate each view embedding and compute
a final embedding. The model is trained using a contrastive objective that maximizes the consistency
between view embeddings and the final embedding.

Despite encouraging progress, prior studies tend to emphasize on pretraining on molecular graphs
and overlook the impact of other molecular featurizations with their corresponding neural encoders,
which represent chemical information in different ways. Consider SMILES strings as an example.
It explicitly represents informative structures in special characters such as branches, rings, and
chirality [15], which are difficult to learn in graph-based representations [16]. Moreover, the utility of
different featurizations may vary across downstream tasks. Therefore, most previous models relying
on only one or two featurizations might achieve sub-optimal performance across various downstream
tasks. For example, 2D topology is important for many drug-related properties such as toxicity, while
3D geometry arguably determines properties related to quantum mechanics, such as single-point
energy, atomic forces, or dipole moments [17, 18]. Therefore, it is natural to ask whether we can
enjoy the benefits from multiple molecular featurizations and take the relative utilities of different
featurizations into consideration during fine-tuning on downstream tasks.

In this work, we first revisit four commonly used featurizations techniques: (a) 2D topology graphs,
(b) 3D geometry graphs, (c) Morgan fingerprints, and (d) SMILES strings. We leverage four
accompanying neural encoders with proper inductive bias and conduct two case studies, classifying
tetrahedral chiral centers and counting aromatic rings, both of which are informative chemical
descriptors, on representations obtained on different featurization techniques. The results show there
is no one single featurization that dominates the others, indicating that different featurizations encode
chemical semantics of molecules in different ways.

In light of this observation, we then propose a simple and effective MOlecular pretraining framework
with COllaborative featurizations to comprehensively leverage every featurization during both pre-
training and fine-tuning, which we term MOCO for brevity. Its graphical illustration is shown in
Figure 1. The core idea of MOCO is to dynamically adjust the contribution of each featurization
through an attention network, which selectively extracts information from each collaborative “view”
of the raw molecular data. Besides, we design a novel multiview contrastive pretraining strategy,
which trains the model by maximizing the consistency among different views in a self-supervised
manner. Contrary to previous studies [11, 12] that only consider 2D graph structures during fine-
tuning, our MOCO utilizes multiple featurizations in both pretraining and fine-tuning stages and
further allows interpretation analysis of different downstream tasks for domain scientists. Note that
our proposed MOCO framework is generic, allowing for seamless integration of off-the-shelf neural
architectures. To the best of our knowledge, this is the first work that studies how various featurization
techniques should be utilized for molecular pretraining and downstream tasks.

We evaluate the effectiveness of our MOCO model on widely-used benchmark datasets including
MoleculeNet [19] and QM9 [20] that cover a wide range of molecular property prediction tasks. The
results reveal that MOCO consistently improves non-pretraining baselines without negative transfer
and outperforms existing state-of-the-art molecular pretraining models, achieving a 1.1% absolute
improvement in terms of average ROC-AUC. Furthermore, the learned model weights of molecular
featurizations for different end tasks are well aligned with prior chemical knowledge. We also suggest
a series of guidelines on choosing effective featurization techniques for molecular representations.

The main contributions of this work are three-fold:

• We explore the featurization spaces of molecules with appropriate neural encoders and highlight
the importance of incorporating different featurizations for molecular pretraining.

• We propose a novel molecular contrastive pretraining framework that adaptively integrates
information from multiple collaborative featurizations during both pretraining and fine-tuning
stages and provides interpretability for downstream molecular property prediction tasks.
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• Extensive experiments conducted on public benchmark datasets validate the effectiveness of
our proposed model. MOCO is able to achieve the state-of-the-art across various downstream
datasets without negative transfer.

2 Preliminaries
2.1 A Brief Recapitulation of Molecular Featurization Techniques

Molecular featurizations translate chemical information of molecules into representations that can
be understood by machine learning algorithms. Concretely, we consider the following molecular
featurizations covering string-, graph-, scalar-, and vector-based representations for 1D/2D molecules
and 3D structures, which are popular in literature [21, 22]:

• 2D topology graphs model atoms and bonds as nodes and edges respectively. It is arguably
a common technique, especially for capturing substructure information by means of graph
topology.

• 3D geometry graphs incorporate atomic coordinates (conformations) in their representations
and are able to depict how atoms are positioned relative to each other in the 3D space. We
consider conformers in an equilibrium state, corresponding to the minima in a potential energy
surface.

• Morgan fingerprints [23, 24] encode molecules in fixed-length binary strings, with bits indicat-
ing presence or absence of specific substructures. They represent each atom according to a set
of atomic invariants and iteratively update these features among neighboring atoms using a hash
function.

• SMILES strings are a concise technique that represents chemical structures in a linear nota-
tion using ASCII characters, with explicitly depicting information about atoms, bonds, rings,
connectivity, aromaticity, and stereochemistry.

2.2 Learning Representations with Different Featurizations

Next, we introduce four encoders with different inductive bias to capture the intrinsic information
with each featurization. Here we only discuss the high-level design of each encoder; please refer to
Supporting Information: Secion 1 for detailed implementations of each encoder.

Notations. Each molecule can be represented as an undirected graph, where nodes are atoms
and edges describe inter-atomic bonds. Formally, each graph is denoted as G = (A,R,X,E),
where A ∈ {0, 1}N×N is the adjacency matrix of N nodes, R ∈ RN×3 is the 3D position matrix,
X ∈ RN×K is the matrix of atom attributes of K dimension, and E ∈ RN×N×E is the tensor for
bond attributes of E dimension. Additionally, each molecule is attached with a binary fingerprint
vector f ∈ {0, 1}F of length F and a SMILES string S = [sj ]

S
j=1 of length S. In what follows, the

subscript i is used to index the i-th molecule.

Embedding 2D graphs. To capture the 2D topological information, we employ a widely-used
Graph Isomorphism Network (GIN) model [25] denoted by f2D, which receives as input the graph
adjacency matrix and attributes of atoms and bonds, and produces the embedding vector z2D

i ∈ RD:

z2D
i = f2D(Xi,Ei,Ai). (1)

Embedding 3D graphs. To model additional spatial coordinates associated with atoms, we leverage
SchNet [26] as the backbone, which models message passing as continuous-filter convolutions and is
able to preserve rotational invariance for energy predictions. We denote its encoding function as f3D
which takes atom features and positions as input and produces the 3D embedding z3D

i ∈ RD:

z3D
i = f3D(Xi,Ri). (2)

Embedding molecular fingerprints. Since there is a lack of proper neural encoders for fingerprints,
we propose an attention-based network to model interactions of feature fields in fingerprint vectors,
which considers the discrete and extremely sparse nature of fingerprints. Specifically, we first
transform all F feature fields into a dense embedding matrix Fi ∈ RF×DF via embedding lookup.
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Table 1: Results of two case studies with different featurizations: chirality classification and aromatic
ring count regression.

Target 2D 3D SM FP

Chirality (AP, ↑) 0.4952 0.4959 0.5505 0.5246
#Rings (MAE, ↓) 0.1949 0.2021 0.3077 0.2590

Then, we use a multihead self-attention network fFP [27] to model the interaction among those feature
fields, resulting in an embedding matrix ẐFP

i ∈ RF×DF . Following that, we perform sum pooling
and use a linear model fLIN to obtain the final fingerprint embedding zFP

i ∈ RD:

ẐFP
i = fFP(Fi), zFP

i = fLIN

(
DF∑
d=1

ẐFP
i,d

)
. (3)

Embedding SMILES strings. To encode SMILES strings, we use a pretrained RoBERTa [28] as
the backbone model. As SMILES strings do not possess consecutive relationships, the RoBERTa
model is pretrained using the masked language model as the only objective, unlike conventional
natural language models [29]. After that, in order to reduce the computational burden, we freeze the
RoBERTa encoder (denoted by fSM) in our model and employ an additional learnable MultiLayer
Perceptron (MLP) on the representation si ∈ RDS to get the final embedding zSM

i ∈ RD:

si = fSM(Si), zSM
i = fMLP(si). (4)

2.3 Case Studies

Figure 2: (a) Chirality: even if two graphs are
isomorphic, they can have two distinct stereochem-
istry structures. (b) The aromatic ring is an impor-
tant functional group.

Mirror plane

(a) (R)-(−)-2-Butanol, (S)-(+)-2-Butanol (b) Adenine
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We present two case studies—chirality classification
and aromatic ring counting—to demonstrate that the
representation ability of each featurization with the
corresponding neural encoder is different. For chiral-
ity classification, we randomly select 10K molecules
with one chirality center from GEOM-Drugs [30] and
test whether the representations obtained using the
four featurizations can classify tetrahedral chiral cen-
ters as R/S. For aromatic ring counting, we randomly
draw another 10K molecules and test whether these
models can recognize the number of aromatic rings of
each molecule. Note that both chirality properties and
ring counts are informative chemical descriptors [31]
and can be easily computed with existing implementations such as RDKit [32].

We report classification and regression performance in Average Precision (AP) and Mean Absolute
Error (MAE) respectively. The results are summarized in Table 1. It is seen from the table that no
single featurization performs the best on all targets and four representations contain complementary
information to each other, suggesting us to leverage multiple featurizations for molecular pretraining.

3 Molecular Pretraining with Collaborative Featurizations
As with generic self-supervised learning pipelines, the MOCO framework is divided into two stages,
pretraining and fine-tuning. In the first stage, given an unlabeled dataset, we train an encoding
function that learns representations with the four featurization techniques. In the subsequent fine-
tuning phase, we take the weights of the encoders from the pretrained model and tune the model on
molecules with annotations of particular properties in a supervised fashion.

We next introduce the MOCO pretraining framework in detail. We first use obtain four “view”
representations based on the aforementioned four featurizations. Then, we integrate these four
embeddings to compute a final representation for each molecule through an attention network.
Finally, we pretrain the whole model using a contrastive objective.
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3.1 Representation Aggregation from Multiple Featurizations

Since each featurization technique reflects the molecule from one certain aspect, we take weighted
average of every view embedding to obtain a comprehensive final representation:

zi =
∑

m∈M
αmzm

i , (5)

where M = {2D, 3D,FP,SM} is the set of all views. We leverage an attention network [33] that
learns to adjust the contribution of each view. Formally, the attention coefficient αm denoting the
contribution of the m-th view is computed by:

αm =
exp(wm)∑

m′∈M exp(wm′)
, wm =

1

|B|
∑
i∈B

q⊤ · tanh
(
W

zm
i

∥zm
i ∥2

+ b

)
, (6)

where q, b ∈ RD, W ∈ RD×D are trainable parameters in the attention network, and B denotes
the set of molecules in the current training batch. Note that we perform ℓ2 normalization on all
embeddings to regularize the scale across different views when computing the attention scores.

3.2 Contrastive Objectives for Pretraining

Finally, we train the model using a contrastive objective by aligning the aggregated embedding with
all view-specific embeddings. Particularly, for one molecule i, we designate its four view embeddings
zm
i as the anchors and the aggregated embeddings zi as the positive instance. Other aggregated

embeddings {zj}i ̸=j in the same batch are then chosen as the negative samples. Following prior
studies [8, 34–38], we leverage the Information Noice Contrastive Estimation (InfoNCE) objective,
which can be formally written as:

L =
1

|B|
∑
i∈B

[
1

|M|
∑

m∈M
− log

exp(θ(zm
i , zi)/τ)∑

j∈B exp(θ(zm
i , zj)/τ)

]
, (7)

where the critic function θ computes the likelihood scores of contrastive pairs and the hyperparame-
ter τ adjusts the dynamic range of the likelihood scores of contrastive pairs. Specifically, the critic
function θ performs non-linear transformation via an MLP function g [34] and then measures their
cosine similarity:

θ(x,y) =
g(x)⊤g(y)

∥g(x)∥2∥g(y)∥2
. (8)

After pretraining the model with the self-supervised objective function L, we fine-tune the model
weights of view encoders along with the attentive representation aggregation module with the
supervision of downstream tasks at a smaller learning rate.

4 Experiments
In this section, we present empirical evaluation of our proposed work. Specifically, the experiments
aim to investigate the following three key questions.

• RQ1 (Overall performance). Is the proposed MOCO able to improve non-pretraining baselines
and outperform state-of-the-arts on molecular property prediction tasks?

• RQ2 (Interpretation). Are the learned attention weights of molecular featurizations on different
downstream tasks consistent with chemical knowledge?

• RQ3 (Ablation studies). How do the representation aggregation module and the fine-tuning
strategy affect the model performance?

In the following, we first summarize experimental setup and proceed to results and analysis.

4.1 Experimental Configurations

Datasets. We closely follow the experimental setup of GraphMVP [12] for fair comparison. Specifi-
cally, we pretrain the model using the GEOM-Drugs dataset [30] containing both 2D and 3D informa-
tion. For fine-tuning, we choose a variety datasets extracted from MoleculeNet [19], ChEMBL [39],
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and CEP [40], that cover a wide range of applications, including physiological, biological, and
pharmaceutical tasks, and QM9 [20] that focuses on quantum property prediction. These downstream
tasks include 8 binary classification and 12 regression tasks. For those datasets for fine-tuning,
we follow OGB [41] that uses scaffolds to split training/test/validation subsets with a split ratio of
80%/10%/10%. For detailed description, we refer readers of interest to Supporting Information:
Section 2.

Baselines. For comprehensive comparison, we select the following two groups of SSL methods as
primary baselines in our experiments.

• Generic graph SSL models: GraphSAGE [42], InfoGraph [43], GPT-GNN [44], AttrMask,
ContextPred [7], GraphLoG [9], GraphCL [8], JOAO [45], and GraphMAE [46].

• Molecular SSL models: GROVER-Contextual (GROVER-C), GROVER-Motif (GROVER-
M) [47], UnifiedMol [48], GraphMVP3 [12] and BET [49].

To ensure a fair comparison, all the above SSL baselines are pre-trained on GEOM-Drugs dataset
with identical atomic and bond features and evaluated based on the same settings following Hu et
al. [7]. However, some hand-crafted features are closely related to the design of UnifiedMol [48], e.g.
subgraph isomorphism, thus we keep these features during reproduction. We also report performance
with a randomly initialized model as the non-pretraining baseline.

Implementation details. In the GEOM-Drugs dataset, since the original full set is too large
(containing 317K molecules with over 9M conformations), we randomly select 50K molecules as
the pretraining dataset. For each molecule, we select to use its top-5 conformers of the lowest
energy in virtue of their sufficient geometry information. Since molecules in the fine-tuning datasets
do not have 3D information available, we use ETKDG [50] in RDkit [32] to compute molecular
conformations. For both pretraining and fine-tuning datasets, we use RDkit to generate 1024-bit
molecular fingerprints with radius R = 2, which is roughly equivalent to the ECFP4 scheme [51].
We would like to emphasis that all dataset preprocessing and graph encoder architectures are kept in
line with GraphMVP [12] to ensure fair comparison. Readers of interest may refer to Supporting
Information: Section 3 for implementation details regarding software/hardware platforms, model
training, and hyperparameter specifications.

Evaluation protocols. For classification tasks, we report the performance in terms of the Area
Under the ROC-Curve (ROC-AUC), where higher values indicate better performance. For quantum
property and other non-quantum regression tasks, we measure the performance in Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) respectively, where lower values are better. We
repeat every experiment on three seeds with scaffold splitting and report the averaged performance
with standard deviation, following previous work [12].

4.2 Main Results on Molecular Property Prediction

The performance of molecular property prediction tasks is summarized in Table 2. It can be found
that our MOCO shows strong empirical performance across all eight low-data downstream datasets,
delivering seven out of eight state-of-the-art results and acquiring a 1.1% absolute improvement on
average. The outstanding results validate the superiority of our proposed model.

We make other observations as follows. Firstly, MOCO obtains more accurate and stabler predictions
compared to the randomly initialized baseline, indicating that our pretraining framework can transfer
the knowledge from large, unannotated datasets to smaller downstream datasets without negative
transfer. Secondly, previous work has already achieved pretty high performance. For example, the
current state-of-the-art UnifiedMol [48] only obtains a 0.05% absolute improvement over its best
baseline BET [49] in terms of average ROC-AUC. Our work pushes that boundary without extensive
hyperparameter tuning, with an absolute improvement of up to 1.4% over UnifiedMol in terms of
average ROC-AUC. Lastly, it is worth mentioning that, the non-pretraining baseline even achieves
better performance than some graph-based pretraining models. On some challenging datasets (e.g.,
Tox21, MUV, and ToxCast), it even achieves the second to best performance. This once more
demonstrates the effectiveness of leveraging multiple featurization techniques.

3In our experiments, we do not include its two variants GraphMVP-G and GraphMVP-C since they are
essentially two ensemble models that combine AttrMask and ContextPred [7] respectively.
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Table 2: Results for eight molecule property prediction tasks in terms of ROC-AUC (%, ↑). We
highlight the best- and the second-best performing results in boldface and underlined, respectively.

Pretraining BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg.

— 71.0±0.5 75.9±0.3 64.7±2.3 57.7±3.1 71.5±5.3 77.7±1.0 75.9±0.7 71.5±2.7 70.63

GraphSAGE [42] 64.5±3.1 74.5±0.4 60.8±0.5 56.7±0.1 55.8±6.2 73.3±1.6 75.1±0.8 64.6±4.7 65.64
AttrMask [7] 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4 70.16
GPT-GNN [44] 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 57.8±3.1 76.1±2.3 75.1±0.2 77.6±0.5 68.27
InfoGraph [43] 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5 70.10
ContextPred [7] 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4 70.89
GraphLoG [9] 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 62.0±1.8 73.1±1.7 73.4±0.6 78.8±0.7 68.47
GROVER-C [47] 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 59.9±8.2 72.3±0.9 75.9±0.9 79.2±0.3 69.21
GROVER-M [47] 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 77.8±2.0 73.3±2.0 73.8±1.4 73.4±4.0 70.14
GraphCL [8] 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8 70.64
JOAO [45] 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 66.3±3.9 77.0±2.2 76.6±0.5 72.9±2.0 69.57
GraphMVP [12] 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.69
GraphMAE [46] 70.9±0.9 75.0±0.4 64.1±0.1 59.9±0.5 81.5±2.8 76.9±2.6 76.7±0.9 81.4±1.4 73.31
UnifiedMol [48] 70.4±2.2 75.2±0.4 63.3±0.3 62.2±1.1 81.3±4.9 76.9±1.5 77.5±1.1 80.3±2.2 73.38
BET [49] 68.3±1.2 76.1±0.3 62.2±0.4 63.4±0.9 81.1±6.3 76.2±1.1 78.5±0.8 80.9±2.4 73.34

MOCO 71.6±1.0 76.7±0.4 64.9±0.8 61.2±0.6 81.6±3.7 78.5±1.4 78.3±0.4 82.6±0.3 74.41

4.3 Interpretation and Analysis

In order to analyze the correlation between tasks and featurization techniques, we visualize the
attention weights α learned on different downstream tasks in Figure 3. Note that most of the datasets
in MoleculeNet [19] are ADMET property prediction tasks: chemical Absorption (A), Distribution
(D), Metabolism (M), Excretion (E), and Toxicity (T), and we thus group the eight end tasks according
to their prediction targets in the following analysis.

In general, we can interpret from the visualization that 2D-based features are more significant than
3D-based features in the studied tasks, which is well aligned with chemical knowledge. We provide
detailed analysis as follows:

• In Tox21, ClinTox, SIDER, and ToxCast, we find that 2D graphs play the most important
role. These four datasets are related to toxicity (or side effects). Although it is a very complex
biological issue to explain, such properties can still be partially deduced from certain functional
groups patterns contained in 2D graphs. Actually, medicinal chemists have developed such a
database to provide them with necessary alerts of potential side effects in drug design [52].

• BBBP, which measures blood-brain barrier permeability, is mostly dominated by the following
properties: liposolubility/water-solubility, molecular weight, and interaction between molecules
and transporter proteins. Similarly, these properties can also be inferred from 2D topology,
such as molecules with too many hydrogen bond acceptors/donors are unlikely to break the
blood-brain barrier due to poor liposolubility [53].

• On BACE and MUV we see 2D graphs and SMILES strings contribute most. These two datasets
are about predicting protein-ligand binding activities, which are theoretically relevant to 3D
conformations. However, it is still an open question that whether the conformation sampling
methods can produce conformations that resemble bioactive conformations, which provide the
key information for protein-ligand binding. Nevertheless, in each of these tasks, the target protein
is fixed so that bioactivity can be partially deduced from 2D structures, which is supported by
the success of fragment-based Quantitive Structure-Activity Relationship (QSAR) models [54].

• Due to the complicated pathogenetic mechanisms, it is hard to draw an explanation to why
attention weights of fingerprints outweigh the other three features in the HIV task. Given that
the HIV dataset is the largest one (over 40,000 molecules per task), one possible explanation of
this phenomenon is that we use a high-dimensional fingerprint representations (1024 bits).

Concerning the difference between three 2D-based features (namely 2D topological graphs, fin-
gerprints, and SMILES strings), we make the following findings, which we hope could serve as
guidelines for future research on molecular representation learning:

7



Molecular Contrastive Pretraining with Collaborative Featurizations

BBBP
Tox21

BACE

ClinTox

SIDER
HIV

MUV

ToxCast

2D

3D

FP

SM

.44 .54 .51 .36 .52 .15 .64 .48

.10 .09 .02 .03 .03 .07 .02 .13

.23 .04 .13 .16 .16 .72 .02 .05

.23 .34 .35 .46 .30 .06 .32 .34
.20

.40

.60

Figure 3: Visualizing the learned attention weights on eight molecular property prediction datasets.

Table 3: Results of two case studies: chirality classification and ring counting. We highlight the best
and second-best performing results in boldface and underline, respectively.

2D 3D SM FP AttrMask GraphMAE [46] GraphMVP [12] UnifiedMol [48] MOCO

Chirality (AP, ↑) 0.4952 0.4959 0.5505 0.5246 0.5068 0.5196 0.5152 0.5207 0.5469
#Rings (MAE, ↓) 0.1949 0.2021 0.3077 0.2590 0.1785 0.1658 0.1694 0.1625 0.1533

• 2D graph representations can encode local information explicitly by resembling chemical struc-
tures. Besides, graph-based neural networks can capture long-range local chemical environment
through message passing. For example, with molecular graphs, it is more convenient to identify
which part of the molecule serves as a scaffold.

• In principle, SMILES strings contain all 2D information of certain molecules, but with atoms
and bonds represented in ASCII characters, neural networks may have difficulty in distilling
semantic meanings of chemical structures in a numerical way.

• Fingerprint representations are based on local structures and thus such features may be less
effective in circumstances where long-range effects induced by topologically distant functional
groups predominate, which accounts for relatively small attention weights of fingerprints in
Figure 3.

4.4 Additional Experiments

4.4.1 Case Studies: Chirality Classification and Aromatic Ring Counting

In this section, we evaluate MOCO and some state-of-the-art baselines on the two case studies
described in Section 2.3 — chirality classification and aromatic ring counting — under the same
experimental configuration as in Section 4.1. The results are summarized in Table 3. It can be observed
that the performance of MOCO surpasses all of the other methods, validating the effectiveness of our
approach. However, it is important to note that while our model achieves the best performance, it
does not outperform that of a single modality in the task of chirality classication. Such phenomenon
is not uncommon in large vision-language models, e.g., CLIP [55], which are less capable of
single-modality models on specific tasks. Our method can identify the most sensible modality-
complementary information but not necessarily guarantee superior performance since we encourage
alignment across multiple featurizations.

4.4.2 Molecular Property Regression

To demonstrate that the conformations generated by RDKit are helpful, we further conduct an
experiment on quantum property regression on the QM9 dataset [20], where 3D conformations
generated by RDKit are used for the fine-tuning datasets. This task is known to be closely related to
3D structures. Table 4 presents the performance comparison of MEMO with two non-pretraining
(supervised) baselines SchNet and MOCO (denoted by SchNet-NP and MOCO-NP) and two state-
of-the-art pretraining baselines GraphMVP [12] and 3D Infomax [11].

It is seen that our MOCO model achieves the best performance on all datasets. GraphMVP that
consider only 2D structures during fine-tuning even result in negative transfer on some datasets. Our
MOCO, on the contrary, achieves better performance than the supervised baseline, underscoring the
value of leveraging 3D structures (as well as other sources of 2D information) during fine-tuning.
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Table 4: Results for eight molecule quantum property regression tasks in terms of Mean Absolute
Error (MAE, ↓). The highest performance is highlighted in bold.

Target µ α ϵHOMO ϵLUMO ϵgap U0 U
〈
R2
〉

Unit D Bohr3 meV meV meV meV meV Bohr3

SchNet-NP [26] 0.4604 0.3251 95.9740 78.5870 136.4720 98.1240 100.1650 24.3277
MOCO-NP 0.3767 0.2439 73.0625 69.8780 102.2332 77.4708 92.8562 17.5842

GraphMVP [12] 0.3726 0.4390 75.3750 72.3820 104.8370 278.8900 325.8021 22.6433
3D Infomax [11] 0.3644 0.4190 72.0558 67.6203 99.4032 207.2148 219.5415 20.3934

MOCO 0.3618 0.2236 71.5120 58.5890 97.7440 64.3550 66.3958 15.5571
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Figure 4: Ablation studies on representation aggregation and the fine-tuning strategy.

We also perform experiments on non-quantum property regression tasks. Our proposed MOCO also
obtains promising improvements compared to the current state-of-the-art baselines. Please refer to
Supporting Information: Section 4.1 for performance comparison and analysis.

4.5 Ablation Studies

Finally, we conduct ablation studies on the representation aggregation module and the fine-tuning
strategy. We consider the following model variants for further inspection. Except the modifications in
specific modules, other implementations remain the same as previously described.

• MOCO–Max removes the attention network in the representation aggregation module in Equa-
tion (5) and simply uses max pooling to combine view embeddings.

• MOCO–Mean modifies representation aggregation by taking average over view embeddings.
• MOCO–Freeze does not fine-tune the representation aggregation module but instead uses the

frozen weights of the pretrained model.

We report the performance of model variants in Figure 4. It is seen that all three variants achieve
downgraded performance, which empirically rationalizes the design choice of our molecular pre-
training framework with collaborative featurizations. Specifically, the performance of MOCO–Max
and MOCO–Mean without attention aggregation mechanisms of multiple featurizations is inferior
to that of MOCO, demonstrating the necessity of adaptively combining information from multiple
featurizations. In addition, MOCO–Freeze occasionally obtains better performance than the two
other variants, which indicates that our proposed attention network is able to select information from
different views. It does not, however, fine-tune the contribution of featurizations with downstream
datasets, where the optimal combination might differ, resulting in performance deterioration.

Moreover, we conduct ablation studies on models that include only three view representations, where
the results can be found in Supporting Information: Section 4.2. Results demonstrate the necessity of
comprehensively leveraging four views in the proposed MOCO model.

5 Related Work
Molecular representation learning. Traditional methods [51, 56, 57] represent molecular structures
with fingerprints. Some prior studies [19, 58, 59] employ tree-based machine leaning models such as
random forests [60] and XGBoost [61] on fingerprints to predict the properties of molecules. With
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Table 5: Comparing MOCO with representative self-supervised methods on molecular pretraining.

Pretraining Fine-tuning
Method

2D 3D Fingerprint SMILES 2D 3D Fingerprint SMILES

SMILES-BERT [5] ✓ ✓
ChemBERTa [6] ✓ ✓
AttrMask, ContexPred [7] ✓ ✓
GraphCL [8] ✓ ✓
GraphLoG [9] ✓ ✓
GROVER [47] ✓ ✓
GEM [10] ✓ ✓
3D Infomax [11] ✓ ✓ ✓
GraphMVP [12] ✓ ✓ ✓
UnifiedMol [48] ✓ ✓ ✓
AGPT [80] ✓ ✓ ✓ ✓
MOCO (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

the development of deep learning, neural approaches have been dominating the field given their
strong representation ability. One line of work [5, 6, 49] leverages language modeling techniques
such as BERT [29] to learn molecular representations based on SMILES strings [14]. However,
some argue that sequence-based representations cannot fully capture substructure information and
propose to leverage Graph Neural Networks (GNNs), which model molecules as graphs with atoms
as nodes and bonds as edges [62–65]. Despite the prosperous progress, they only model 2D topo-
logical structures of molecules, without considering the 3D coordinates of atoms that are known to
determine certain chemical and physical functionalities of molecules. To address this deficiency,
recent work further explicitly considers such 3D geometry and designs equivariant networks to obtain
the representations [26, 66–75].

Molecular pre-training. Even though molecular representation learning techniques have been
extensively investigated, there are very few labeled datasets available for studying the molecular
properties of interest (e.g., drug-likeness or quantum properties). On the other hand, there are abundant
unannotated molecules available, which motivates researchers to study pretraining techniques that
learn the model weights in a self-supervised manner and transfer the knowledge to downstream
datasets with limited annotations via fine-tuning. A series of pretraining frameworks on 2D molecular
graph representations have been developed so far [7, 47, 76–78]. Recent work GEM [10] studies
large-scale pretraining for 3D geometry representations. Additionally, researchers also study to
supplement 2D-graph-based pretraining with 3D conformation information [11, 12, 48, 79]. Note that
apart from directly applying the pretrained model to downstream tasks, the molecular representations
obtained from pretrained model can also be combined with traditional machine learning methods.
For example, blending various representations using random forest is one possible avenue. [80]

Other related work. The application of language models has been gaining prominence in this field.
Their usage can be categorized into three main approaches: (1) direct prompting pre-trained language
models, such as GPT4 [81], for tasks like property prediction for molecules [82], (2) training or fine-
tuning language models specifically tailored for molecular discovery tasks [83], and (3) developing
self-supervised transformer models on molecular string representations [6, 84]. The latter approach,
which utilizes a variety of molecular representations including string, structural, topological, and
geometrical information, aligns closely with our work. Generative machine learning, particularly
diffusion models [85, 86], has emerged as a powerful tool for the inverse design of molecules. These
models use principles from nonequilibrium thermodynamics to simulate a diffusion process from
complex to prior distributions. Learning to reverse this process enables the iterative generation of
new molecular structures [87]. Their capacity for pre-training and representation learning, along with
their ability to construct new molecular structures, is exemplified in recent works [88, 89].

A succinct comparison of our work with other representative methods is provided in Table 5. Com-
pared to the above studies, our proposed MOCO is the only model that can adaptively leverage
multiple featurizations for both pretraining and fine-tuning stages.
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6 Conclusion
We investigate the neural scaling behavior of molecular representation learning to explore how
quantity and quality of molecular data affect the performance. Our research confirms that the
performance of MRL follows a power-law relationship with data quantity. Specifically, the graph
modality and uniform data distribution exhibit higher learning efficiency in the studied datasets, and
the optimal model capacity is highly correlated with task requirements. Moreover, with increasing
downstream data, the positive transfer stemming from pre-training diminishes and even lead to
negative transfer in the high-data regime. To challenge these scaling laws, we further adapt seven data
pruning strategies to molecular data and benchmark their performance. Surprisingly, none of them
with simple adaptations can beat the random pruning baseline in MRL. Based on our experimental
findings, we raise several key considerations for molecular representation learning, particularly from
a data-centric perspective, providing valuable insights for future research endeavors.

Future Work. The flexibility of out method allows its application to a broad range of target
properties, extending beyond the specific models and tasks discussed above. For instance, in the
domain of protein property prediction, modeling mechanical and dynamical properties [90] could
be very important, as exemplified in normal mode frequency prediction [91]. Our approach can
also aid in predictions by integrating various protein features like amino acid sequences and protein
structures, which have complementary inductive bias [92]. Moreover, the concept of integrating
multiple featurizations holds potential for application in chemical reactions. In certain cases, reaction
coordinates might be more discernible and easier to learn using one type of featurization over others.
For instance, in predicting the forces within different conformations, 3D conformational featurization
would be more important than the other featurizations [93].
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The supporting information is composed of (a) detailed implementation of four view encoders, (b)
descriptions of pre-training and fine-tuning datasets, along with data preprocessing methodologies, (3)
specifications of experimental settings, including computing infrastructures, hyperparameters specifi-
cations, and computational complexity analysis, (4) additional experimental results, incorporating
more experiments on molecular property regression tasks, ablation studies using alternative featuriza-
tions, experiments on variant fingerprint encoders, and explanation for the impact of pre-training data
scale, and (5) a more extensive review of related work.

A Implementation of View Encoders
In this section, we introduce the detailed implementation of the four view encoders. We denote the
representation for node (atom) vi as hi and the representation at the graph (molecule) level as z. As
each encoder is independent to each other, we omit the superscript representing the specific view
m ∈ {2D, 3D,FP,SM} is clear for notation simplicity. Also, for clarity, when the context is clear,
we omit the subscript j that indexes the molecule.

Embedding 2D graphs. Graph Isomorphism Network (GIN) [25] is a simple and effective model
to learn discriminative graph representations, which is proved to have the same representational power
as the Weisfeiler-Lehman test [94]. Since GIN has been widely adopted for 2D graph representation
learning [7, 8, 45], we leverage a GIN model to obtain the representations for the 2D molecular
graphs. Recall that each molecule is represented as G = (A,X,E), where A is the adjacency matrix,
X and E are features for atoms and bonds respectively. The layer-wise propagation rule of GIN can
be written as:

h
(k+1)
i = f

(k+1)
atom

h
(k)
i +

∑
j∈N (i)

(
h
(k)
j + f

(k+1)
bond (Eij))

) , (9)

where the input features h(0)
i = xi, N (i) is the neighborhood set of atom vi, and fatom, fbond are two

MultiLayer Perceptron (MLP) layers for transforming atoms and bonds features, respectively. By
stacking K layers, we can incorporate K-hop neighborhood information into each center atom in the
molecular graph. Then, we take the output of the last layer as the atom representations and further
use the mean pooling to get the graph-level molecular representation:

z2D =
1

N

∑
i∈V

h
(K)
i . (10)

Embedding 3D graphs. Following GraphMVP [12], we use the SchNet [26] as the encoder for
the 3D geometry graphs. SchNet models message passing in the 3D space as continuous-filter
convolutions, which is composed of a series of hidden layers, given as follows:

h
(k+1)
i = fMLP

 N∑
j=1

fFG(h
(t)
j , ri, rj)

+ h
(t)
i , (11)

where the input h(0)
i = ai is an embedding dependent on the type of atom vi, fFG(·) denotes the

filter-generating network. To ensure rotational invariance of a predicted property, the message passing
function is restricted to depend only on rotationally invariant inputs such as distances, which satisfying
the energy properties of rotational equivariance by construction. Moreover, SchNet adopts radial
basis functions to avoid highly correlated filters. The filter-generating network is defined as follow:

fFG(xj , ri, rj) = xj · ek(ri − rj) = xj · exp(−γ∥∥ri − rj∥2 − µ∥22). (12)

Similarly, for non-quantum properties prediction concerned in this work, we take the average of the
node representations as the 3D molecular embedding:

z3D =
1

N

∑
i∈V

h
(K)
i , (13)

where K is the number of hidden layers.
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Embedding fingerprints. Due to the discrete and extremely sparse nature of fingerprint vectors, we
first transform all F binary feature fields into a dense embedding matrix F ′ ∈ RF×DF via embedding
lookup. Then, we introduce a positional embedding matrix P ∈ RF×DF to capture the positional
relationship among bits in the fingerprint vector, which is defined as:

Pp,2i = sin(p/100002i/DF ), (14)

Pp,2i+1 = cos(p/100002i/DF ), (15)

where p denotes the corresponding bit position and i is corresponds to the i-th embedding dimension.
The positional embedding matrix will be added to the transformed embedding matrix:

F = F ′ + P . (16)

Thereafter, we use a multihead Transformer [27] to model the interaction among those feature fields.
Specifically, we first transform each feature into a new embedding space as:

Q(h) = FW
(h)
Q , (17)

K(h) = FW
(h)
K , (18)

V (h) = FW
(h)
V , (19)

where the three linear transformation matrices W
(h)
Q ,W

(h)
K ,W

(h)
V ∈ RDF×D/H parameterize the

query, key, and value transformations for the h-th attention head, respectively. Following that, we
compute the attention scores among all feature pairs and then linearly combine the value matrix from
all H attention heads:

W
(h)
A = softmax

(
Q(h)(K(h))⊤√

DH

)
, (20)

Ẑ =
[
W

(1)
A V (1) ; W

(2)
A V (2) ; . . . ; W

(H)
A V (H)

]
, (21)

Finally, we perform sum pooling on the resulting embedding matrix Ẑ ∈ RF×DF and use a linear
model fLIN to obtain the final fingerprint embedding zFP ∈ RD:

zFP = fLIN

(
DF∑
d=1

Ẑd

)
. (22)

Embedding SMILES strings. Given ASCII-encoded SMILES strings, we first tokenize them with
the Byte-Pair Encoder (BPE) tokenizer [95], which strikes a balance among character- and word-level
representations and allows to handle large vocabularies in molecular corpora. Specifically, BPE finds
the best word segmentation by iteratively and greedily merging frequent pairs of characters. In our
implementation, we use a max vocabulary size of 52K tokens for both pretraining and downstream
datasets.

After tokenization, we first pretrain a RoBERTa [28] model on the pretraining dataset with the
masking language model as the sole training objective, as SMILES strings do not possess sequential
relationships. To be specific, 15% tokens in a SMILES string are randomly selected and replaced with
a special token [MASK]. We also insert a special token [CLS] to each string to represent the whole
molecule. The training objective function is to independently predict the original tokens given the
output on masked tokens. Finally, the representation of the [CLS] token is regarded as the molecular
embedding.

After pretraining the RoBERTa backbone, we freeze its parameters and leverage an additional MLP
layer on top of each molecular embedding to obtain the final representation for each SMILES string.
This strategy improves memory efficiency and thus enables larger batch sizes for our contrastive
pretraining framework.

B Dataset Description
In this section, we briefly introduce the datasets used for pretraining and fine-tuning, as well as details
of dataset prepossessing. Basic dataset statistics is summarized in Table 6.
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Table 6: Statistics of datasets used in experiments. The first section describes the datasets with 3D
information which is used for pre-training; the later two sections describe datasets for fine-tuning.

Dataset #Molecules Avg. #atoms Avg. #bonds #Tasks Avg. degree

GEOM-Drug 304,466 44.40 46.40 — 2.09
C

la
ss

ifi
ca

tio
n

BBBP 2,039 24.06 25.95 1 2.16
Tox21 7,831 18.57 19.29 12 2.08

ToxCast 8,576 18.78 19.26 617 2.05
SIDER 1,427 33.64 35.36 27 2.10
ClinTox 1,477 26.16 27.88 2 2.13
MUV 93,087 24.23 26.28 17 2.17
HIV 41,127 25.51 27.47 1 2.15

BACE 1,513 34.09 36.86 1 2.16

R
eg

re
ss

io
n ESOL 1,128 13.30 13.69 1 2.06

Lipophilicity 4,200 27.04 29.50 1 2.18
Malaria 9,999 30.36 33.20 1 2.19

CEP 29,978 27.66 33.39 1 2.41
QM9 130,831 18.03 18.65 8 2.07

B.1 Pretraining Datasets

We choose GEOM-Drugs4 [30] as the pre-training dataset, which contains high-quality conformers
for 304,466 mid-sized organic molecules with experimental data. The conformer information in
GEOM-Drugs is generated using the CREST [96] program, which provides reliable and accurate
structure generation. Note that atoms usually have multiple conformations resulting in potentially
different chemical properties. In our work, we focus on the conformations of the lowest energy,
as they are more likely to occur naturally [11, 12]. Moreover, since the original full set is large
(317K molecules with over 9M conformations), we follow GraphMVP [12] to sample a subset of
50K molecules, each with its top-5 conformations, for pretraining. We use the same random seeds to
ensure dataas with GraphMVP.

B.2 Fine-Tuning Datasets

For fine-tuning, we use 12 datasets collected from MoleculeNet5 [19], ChEMBL [39], and CEP [40],
which target on different properties and distinct tasks. These properties can be divided into four main
categories: physical chemistry, biophysics, physiology, and quantum properties.

Physical chemistry. ESOL [97] consists of water solubility data recording whether molecules
are water-soluble. The Lipophilicity dataset is a subset of ChEMBL [39] measuring the molecule
octanol/water distribution coefficient. The CEP dataset is a subset of the Havard Clean Energy Project
(CEP) [40], which estimates the organic photovoltaic efficiency.

Biophysics. The HIV dataset [98] is introduced by Drug Therapeutics Program (DTP) AIDS
Antiviral Screen, which tests the molecular ability to inhibit HIV replication. The Maximum Unbiased
Validation (MUV) group [99] is another benchmark dataset selected from PubChem BioAssay by
applying a refined nearest neighbor analysis. The BACE dataset provides qualitative binding results
for a set of inhibitors of human β-secretase 1 (BACE-1). The Malaria dataset [100] assesses the drug
efficacy in inhibiting parasites that cause malaria.

Physiology. The Blood–brain barrier penetration (BBBP) dataset [101] models the barrier perme-
ability of molecules targeting central nervous system. Tox21 [102], ToxCast [103], and ClinTox [104]
are all related to the toxicity of molecular compounds. The Side Effect Resource (SIDER) [105] is a
dataset measuring the adverse drug reactions of 27 system organ classes of marketed drugs.

4https://github.com/learningmatter-mit/geom
5https://github.com/deepchem/deepchem
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Quantum properties. The QM9 dataset [20] consists of 134K stable small organic molecules
made up of four kinds of heavy atoms (C, O, F, N) and hydrogen (H), and each atom is associated
with 12 quantum mechanical properties as regression targets, which are closely related to geometries
minimal in energy. In our experiments, we delete 3,054 uncharacterized molecules which failed the
geometry consistency check [20] and adopt the remaining 130,831 molecules for the downstream
task with 8 quantum-related property regression targets. Specifically, the property µ represents the
dipole moment of the molecule, the property α represents the corresponding isotropic polarizability,
and the

〈
R2
〉

denotes the electronic spatial extent. The property ϵHOMO, ϵLUMO, and ϵgap represent the
energy of HOMO, the energy of LUMO, and the energy gap of the former two energies respectively.
The property U0 and U denote the internal energy of the molecule at 0K and 298.15K, respectively.

A note on overlapping molecules. We find that only 14,087 (≈ 28.2%) molecules in the MUV
dataset overlap with those in GEOM-Drugs and there is no overlapping molecules in the other
fine-tuning datasets. Considering that no labels is used during pretraining, for those overlapped
molecules, we are evaluating the in-domain performance (unsupervised learning performance), while
for those non-overlapped ones, we are evaluating the transfer learning performance.

B.3 Dataset Preprocessing

For classification tasks, we leverage atom types and chirality tags as atom attributes, while the type
and direction of the bond are corresponding bond attributes. Both the atom and bond attributes are
expressed in the form of discrete indices without further embedding. For regression tasks, we first
transform discrete atom and bond attributes through learnable embedding lookup layers following
OGB [41]. Since molecules in the fine-tuning datasets do not have 3D information available, we use
ETKDG [50] in RDkit [32] to generate molecular conformations.

Constructing fingerprints. For both pretraining and fine-tuning datasets, we use RDkit to generate
molecular fingerprints. Morgan fingerprints [23, 24] encode molecules in fixed-length binary strings,
with bits indicating presence or absence of specific substructures. The algorithm assigns an initial
identifier to each non-hydrogen atom according to a set of atomic invariants, iteratively updates the
identifiers among neighborhood atoms within certain hops, and encodes the identifiers using a hash
function. After hashing all of these identifiers into a fixed-length binary string, the representation
provides information on topological characteristics of the molecule.

In our implementation, we set the diameter of neighborhood to 2, the length of fingerprints to 1024,
and follow the default configuration of ECFP4 [51], which uses the following connectivity invariants
to construct the initial node features:

• The atomic number
• The number of heavy (non-hydrogen) neighbor atoms
• The number of attached hydrogens
• The formal charge
• Atom isotopes
• Whether the atom is part of at least one ring

C Implementation Details
C.1 Computing Infrastructures

Software infrastructures. The proposed MOCO is implemented in Python 3.7, with the following
supporting libraries: PyTorch 1.10.2 [106], PyG 2.0.3 [107], RDKit 2022.03.1 [32], OGB 1.3.3 [41]
and HuggingFace’s Transformers 4.17.0 [108].

Hardware infrastructures. We conduct all experiments on a computer server with 8 NVIDIA
GeForce RTX 3090 GPUs (with 24GB memory each) and 256 AMD EPYC 7742 CPUs.

C.2 Hyperparameter Specifications

All model parameters are initialized with the Glorot initialization [109] and trained using the Adam
optimizer [110].
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For hyperpameters of the GIN model and the SchNet model, we keep them in line with the baseline
GraphMVP [12]. Specifically, for the GIN model, we set the number of convolutional layers to 5
and hidden dimension to 300; for the SchNet model, we set the hidden dimension and the number of
filters in continuous-filter convolution to 128. The interatomic distances are measured with 50 radial
basis functions. We stack 6 interaction layers in the SchNet architecture. For the RoBERTa model,
we use the default configuration. Particularly, the hidden dimension is set to 768 and the number of
attention heads is set to 12, and the dropout ratio between hidden layers is set to 0.1. In addition, we
add a MLP layer with the hidden dimension of 300 as the prediction head.

For the fingerprint encoder, we set the bit embedding dimension and the hidden dimension to 64 and
300, respectively. Moreover, we adopt a one-layer Transformer model with 8 attention heads. For
the representation aggregation module, similarly, we set the hidden dimension of all the trainable
parameters to 300. For all activation functions, we stick to ReLU(·) = max(0, ·). For the temperature
parameter τ in the contrastive objective, we tune it from {0.1, 0.3, 0.5}. All these hyperparameters
except for those in GIN and SchNet backbones are selected based on grid search on the validation set.

Moreover, we empirically find that the dropout ratio [111] and the learning rate are two important
hyperparameters in our model. Due to different training dynamics of different view encoders,
we do a hyperparameter search of the learning rates and dropout ratio for each encoder from
{10−3, 10−4, . . . , 10−7} and {0, 0.3, 0.5}, respectively. We would like to emphasize that we do not
tune hyperparameters for different downstream datasets.

C.3 Experimental Configurations

To obtain the SMILES embeddings, the RoBERTa backbone is firstly pretrained for 4 epochs with
all of the available molecules in the GEOM-Drugs dataset. Then, during the pretraining stage, we
set train the whole model for 100 epochs with a batch size of 256 and we ensure that the model
converges.

In the fine-tuning stage, for fair comparison, we follow the scaffold split adopted by GraphMVP [12]
and repeat the experiments for three times. Specifically, we fine-tune our model on downstream tasks
with three different random splits and we report the averaged test performance with the best models
obtained on the validation set for all the methods.

C.4 Computational Complexity Analysis

In MOCO, calculating featurizations (i.e. fingerprints, SMILES strings, and 2D/3D graphs) is
very efficient: computing fingerprints based on SMILES strings can be done in an instant. For
3D structures, there are two types of conformations involved: for pretraining, we directly use the
DFT-calculated conformations shipped with the dataset; for fine-tuning, as no such conformation is
available, we sample conformation with RDKit which is efficient (≈0.01 sec/molecule). Note that it
is costly to use DFT to optimize molecular conformation. An example is given by the OpenCatalyst
project6, which reports that a standard relaxation using DFT takes 8 to 10 hours. In terms of
pretraining time, our MOCO takes slightly longer than GraphMVP’s. To be specific, our pretraining
on GEOM-Drugs takes ≈4h17m to finish whereas the baseline GraphMVP takes ≈4h03m.

D Additional Experiments
In this section, we further perform experiments on non-quantum property regression tasks. We also
include additional experiments with ablated models and model variants.

D.1 More Experiments on Molecular Property Regression Tasks

We further conduct experiments on four additional regression tasks for molecular property prediction,
where the results are presented in Table 7. It can be clearly seen from the table that our MOCO con-
siderably improves the performance of baselines on three datasets and achieves similar performance
to the baseline approaches on the Lipophilicity dataset, which once again verifies the effectiveness
of our framework and demonstrates the importance of integrating different molecular featurization
techniques.

6https://opencatalystproject.org/challenge.html
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Table 7: Additional results on four molecular property regression tasks in terms of Root-Mean-Square
Error (RMSE). The lowest prediction error is highlighted in boldface.

Pretraining ESOL Lipophilicity Malaria CEP Avg.

— 1.364±0.016 0.736±0.006 1.122±0.011 1.380±0.033 1.15051

AttrMask 1.112±0.048 0.730±0.004 1.119±0.014 1.256±0.000 1.05419
ContextPred 1.196±0.037 0.702±0.020 1.101±0.015 1.243±0.025 1.06059
JOAO 1.120±0.019 0.708±0.007 1.145±0.010 1.293±0.003 1.06631
GraphMVP 1.091±0.021 0.718±0.016 1.114±0.013 1.236±0.023 1.03968

MOCO 0.984±0.034 0.707±0.001 1.093±0.009 1.101±0.007 0.97125

Table 8: Results for alternative featurizations in terms of ROC-AUC (%, ↑).

Featurization BBBP Tox21 SIDER ClinTox BACE MUV HIV Toxcast Avg.

SMILES 70.7 76.0 58.7 81.0 81.6 73.2 73.5 64.4 72.4
2D 65.4 74.9 58.0 58.8 72.6 71.0 75.3 61.6 67.2
3D 61.7 74.0 59.6 69.9 81.7 73.7 67.9 64.4 69.1
Fingerprint 66.3 73.4 51.0 64.4 76.3 76.9 70.5 61.1 67.5

MOCO 71.6 76.7 61.2 81.6 82.6 78.5 78.3 64.9 74.4

D.2 Ablation Studies on Multiple Views

To further verify the necessity of incorporating all four views (2D, 3D, FP and SM), we further
compare our MOCO model with four featurization techniques with its ablated counterparts. Figure 5
summarizes the model performance obtained with only three views and Table 8 demonstrates the
model performance obtained with single view. From the figure, it is observed that our MOCO
that adaptively learns to optimize the combinations of four featurization techniques for different
downstream tasks achieves the best performance for almost all datasets, which demonstrates the
necessity of comprehensively considering four featurization. We kindly note that our framework is
general and flexible; it is thus not limited to specifically incorporate these four views.

D.3 Experiments on Variant Fingerprint Encoders

Since there is a lack of proper neural encoders for fingerprints, we propose an attention-based
network to model interactions of feature fields in fingerprint vectors, which considers the discrete and
extremely sparse nature of fingerprints. To demonstrate its effectiveness, we leverage a simple MLP
and a Long Short-Term Memory (LSTM) model as the encoder for the fingerprints respectively. The
performance comparison is summarized in Figure 6. It is clear that our proposed attention encoder
that models feature interactions for fingerprints achieves the best performance.
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Figure 5: Ablation studies on four featurization techniques used in MOCO.
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Figure 6: Results with two variant encoders for fingerprints: MLP and LSTM.

Table 9: Results for alternative featurizations in terms of ROC-AUC (%, ↑).

Featurization BBBP Tox21 SIDER ClinTox BACE MUV HIV Toxcast Avg.

SELFIES 70.6 76.5 62.0 79.8 82.1 77.5 78.4 64.1 73.9
Fragprints 68.1 75.0 58.3 78.6 71.1 77.0 77.1 63.4 71.1

MOCO 71.6 76.7 61.2 81.6 82.6 78.5 78.3 64.9 74.4

D.4 Experiments Using Alternative Featurizations

We further consider two more featurization techniques published in recent years: SELFIES [112],
which is based on string representations and Fragprints [113], which is a path-based substructural
fingerprints. We replace SMILES and fingerprints with SELFIES and Fragprints respectively and
keep other experimental protocols the same. The results on molecular property prediction are shown
in Table 9.

D.5 Explanation for Pre-training Data Scale

We chose 50K data for pretraining mainly for two reasons. Firstly, to ensure a fair comparison, we
strictly followed the experimental settings of GraphMVP for pretraining. It is worth noting that our
data selection method is random, rather than based on specific criteria, which would not lead to
distribution shift. Moreover, all baseline methods were pre-trained using the same size and completely
identical data and then fine-tuned, so we have maximally ensured the fairness of the comparison.
Secondly, whether different pretraining data sizes are really effective in molecular pretraining research
is still an issue that needs to be explored in depth. GraphMVP claim that “with 50K pretraining data
scale, generally we can match with the original paper, even though most of them are using larger
pre-training datasets, like ZINC-2m”. Moreover, previous study [114] has shown that increasing the
data size does not bring significant gains, and they give several reasons of why the self-supervised
pretraining may not be very effective. However, while ensuring fairness of comparison, we used a
smaller pretraining data size to save computational costs and achieved promising results. We also
conducted additional pre-training on a larger scale, and the results are shown in the Table 10.

E More Related Work

The following section provides a more broad literature review across the spectrum of self-supervised
representation learning.

Table 10: Results for alternative featurizations in terms of ROC-AUC (%, ↑).

Featurization BBBP Tox21 SIDER ClinTox BACE MUV HIV Toxcast Avg.

MOCO-100K 70.4 76.2 62.6 83.7 80.0 80.4 77.6 64.9 74.4

MOCO 71.6 76.7 61.2 81.6 82.6 78.5 78.3 64.9 74.4
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E.1 Self-Supervised Representation Learning on Visual and Natural Language Data

A SSL model trains itself by learning a part of the input from another through pretext tasks. Depending
on the pretext task, the existing SSL studies can be divided into three main categories.

Early SSL work studies predictive training on pseudo-labels directly computed from the raw data.
In Computer Vision (CV) domains, typical pretext tasks include image inpainting [115], rearrang-
ing shuffled image patches [116], colorizing grayscale images [117, 118], recognizing geometric
transformations [119], and predicting cluster assignments [120]. In Natural Language Processing
(NLP), word2vec [121] popularizes this paradigm by proposing Continuous Bag-Of-Words (CBOW)
and skip-gram models for predicting center and neighboring words, respectively. Other exemplary
work includes Kiros et al. [122] that predicts neighborhood sentences and BART [123] that recovers
sentence permutation.

The second group of SSL is contrastive learning, which seeks to maximize the agreement of embed-
dings in the latent space under stochastic data augmentations by contrasting positive and negative
samples [4]. It has revolutionized unsupervised representation learning in recent years [34–36, 124–
127] and has been witnessed to perform on par with its supervised counterparts [34, 35]. A key success
to contrastive models is to leverage strong data augmentations that induce invariance irrelevant to
properties of the end tasks [128–131]. The third line of development focuses on generative modeling
of input data. Its core idea is to randomly remove a portion of data and train the model to recover
the removed content. This so-called masked language modeling and its autoregressive counterparts
are first pioneered in the NLP community [13, 28, 29, 132–136] and have since gained increasing
popularity in the CV domain [137–139]. Unlike contrastive learning, generative approaches do
not rely on curated data augmentations. It has been reported that they scale well and generalize to
different downstream tasks [29, 136, 138].

E.2 Graph Self-Supervised Representation Learning

Analogous to the above studies on visual and natural language data, SSL approaches in the graph
domain can also be organized into the same three categories. Due to the rapid development of graph
SSL, we only review the most representative studies in each group. Readers may refer to recent
surveys [140–142] for comprehensive reviews and Zhu et al. [38] for a benchmarking study.

Firstly, the pioneering predictive model Hu et al. [7] explores four strategies at both node and graph
levels, including masked attribute prediction, context prediction, supervised attribute prediction,
and structural similarity prediction. You et al. [143] study three SSL tasks through a multi-task
framework to enable predictive training of graph-structured data. M3S [144] explores the use of
cluster assignments [120] as pseudo-labels and proposes a self-training framework that incrementally
adds high-confident nodes to the labeled dataset.

The second group of work studies generative training. GraphSAGE [42] performs the link prediction
task to reconstruct the graph structure in a once-for-all manner, similar to graph autoencoders [145].
GPT-GNN [44] proposes to perform node and edge reconstruction iteratively.

Lastly, along the line of graph contrastive learning, some investigate contrasting modes for graph
data, typical work of which includes cross-scale contrasting [146, 147], same-scale contrasting [8,
37, 43], and hierarchical contrasting [9, 148]. Another line of work investigates data augmentations.
GraphCL [8] proposes four heuristic augmentation schemes including edge dropping, node dropping,
attribute masking, and subgraph cropping; its follow-up JOYO [45] proposes to learn the augmentation
priors via bi-level optimization. GCA [149] proposes adaptive augmentation that better preserves
important semantics and structures of the underlying graph. SimGRACE [150] eschews the need of
explicit augmentation; Trivedi et al. [151] propose content-aware augmentation to avoid corrupting
task-relevant information.
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