A Survey on Deep Graph Generation: Methods and Applications
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Problem Definition 4. Generative adversarial networks (GAN) consist of a generator and a discriminator, where the Graph BT
generator generates realistic graphs and the discriminator distinguishes between synthetic and properties/rules types

Given a set of M observed graphs G = {G;},, graph gener-
ation learns the distribution of these graphs p(G), from which
new graphs can be sampled Gpew ~ p(G).

design

real graphs.

5. Diffusion models contain two processes. The forward diffusion process constantly adds noise
to the data sample, while the reverse diffusion process recreates the true data sample from a Scalability Interpretability
Gaussian noise input.
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