. An Empirical Study of Graph Contrastive Learning
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Obs. 2. Feature augmentations bring extra benefits to GCL. Composi-
tional augmentations at both structure and attribute levels benefit most.

Data augmentations: generate graph views
= Topology augmentation: ER, EA, EF, ND, RWS, PPR, MDK
= Feature augmentation: FM, FD

In this work, we characterize Graph Contrastive Learning (GCL) algo-
rithms from four dimensions and study their impact through controlled
experiments.
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Negative mining strategies
= Debias selection of false negatives: DCL

= |t is often expensive to obtain high-quality labels at scale in real world. stochastic augmentations.

= = GNNs overfit to small training data and fail to learn reusable, task-invariant
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- SSL techniques have been hugely successful in various domains = Datasets: 4 node + 4 graph datasets; 2 extra large-scale datasets

including graph settings.

= Graph Contrastive Learning (GCL) is the most prominent technique.

= Achieves comparable performance with its supervised counterparts.
= Most prior work only provides model-level evaluation and lacks component-level

| | Obs. 4. Same-scale contrasting generally performs better. Downstream
* Tasks: Node classification, graph classification, and graph regression tasks of different granularities favor different contrasting modes.
= Evaluation protocols: Unsupervised training followed by linear

_ N _ _ _ Obs. 5. Among negative-sample-based objectives, the use of InfoNCE
evaluation (logistic regression) on fixed embeddings.

objective leads to consistent improvements across all settings.
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same sample (positives) apart from (n — 1) pairs of representations

(i.e. false negative) sample.
from different samples (negatives).

(a) Node Dropping (ND) (b) Edge Removing (ER) (c) Edge Adding (EA)
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