An Empirical Study of Graph Contrastive Learning Yanqiao Zhu^{1,2} Yichen Xu³ Qiang Liu^{1,2} Shu Wu^{1,2,⊠} [™]Correspondence CRIPAC 智能感知与计算研究中心 Center for Research on Intelligent Perception and Computing ¹CRIPAC, CASIA ²Sch. AI, UCAS ³Sch. CS, BUPT #### TL;DR In this work, we characterize Graph Contrastive Learning (GCL) algorithms from four dimensions and study their impact through controlled experiments. # Background #### Challenges for Deep Graph Neural Nets (GNNs) - Scarcity of labeled data - It is often expensive to obtain high-quality labels at scale in real world. - ullet \Rightarrow GNNs overfit to small training data and fail to learn reusable, task-invariant knowledge. - Out-of-distribution prediction - Test examples tend to be very different from training examples. - ⇒ GNNs extrapolate poorly. ### Self-Supervised Learning (SSL) comes to rescue! - SSL techniques have been hugely successful in various domains including graph settings. - Graph Contrastive Learning (GCL) is the most prominent technique. - Achieves comparable performance with its supervised counterparts. - Most prior work only provides model-level evaluation and lacks component-level evidence. #### The Contrastive Learning Paradigm - Contrastive Learning (CL) aims to maximize the agreement of latent representations under stochastic data augmentation. - Distinguish a pair of representations from two augmentations of the same sample (positives) apart from (n-1) pairs of representations from different samples (negatives). # **Design Dimensions** - Data augmentations: generate graph views - Topology augmentation: ER, EA, EF, ND, RWS, PPR, MDK - Feature augmentation: FM, FD - Contrasting modes: specify positive and negative samples - Global–Global (G–G) contrast - Local–Local (L–L) contrast - Global–local (G–L) contrast - Contrastive objectives: score likelihood of sample pairs - Negative-sample-based objectives: InfoNCE, JSD, TM - Negative-sample-free objectives: BL, BT, VICReg - Negative mining strategies - Debias selection of false negatives: DCL - Upweight hard negative samples: HNM, HBNM, CNM # Recipes for Effective Graph Contrastive Learning ## **Experimental Configurations** - Datasets: 4 node + 4 graph datasets; 2 extra large-scale datasets - Tasks: Node classification, graph classification, and graph regression - Evaluation protocols: Unsupervised training followed by linear evaluation (logistic regression) on fixed embeddings. **Obs. 1.** Topology augmentation greatly affects model performance. Augmentations that produce sparser graphs lead to better performance. | | Aug. | | No | ode | | Graph | | | | | | |-------|---------------------|--------------------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--| | | | Wiki | CS | Physics | Computer | NCI1 | PROTEINS | IMDB-M | COLLAB | | | | | None | 68.52 ± 0.39 | 90.76 ± 0.05 | 93.69 ± 0.73 | 80.62 ± 0.62 | 58.49 ± 2.21 | $70.94{\pm}1.13$ | 45.07 ± 1.70 | 66.21 ± 0.92 | | | | | EA | $72.65 {\pm} 0.43$ | 92.73 ± 0.10 | 94.77 ± 0.05 | 83.40 ± 0.64 | 70.80 ± 0.55 | 71.17 ± 0.63 | 44.80 ± 1.43 | 68.12 ± 0.63 | | | | | ER | 76.38 ± 0.21 | 92.83 ± 0.17 | 95.21 ± 0.05 | $87.84 {\pm} 0.76$ | 73.03 ± 0.48 | 72.55 ± 0.11 | 45.17 ± 1.64 | 68.13 ± 0.82 | | | | ċ | EF | 74.10 ± 0.67 | 92.99 ± 0.15 | 94.88 ± 0.06 | $86.68 {\pm} 0.73$ | 73.95 ± 0.49 | $70.64 {\pm} 1.67$ | $44.15{\pm}1.21$ | 67.92 ± 0.93 | | | | Topo. | ND | $77.47 {\pm} 0.32$ | $92.81 {\pm} 0.08$ | $95.99{\pm0.12}$ | 87.01 ± 0.54 | 72.12 ± 1.38 | $72.54 {\pm} 0.43$ | $47.03 {\pm} 1.14$ | 70.73 ± 0.78 | | | | Ĕ | PPR | 69.28 ± 0.22 | $92.25 {\pm} 0.07$ | OOM | 85.06 ± 0.53 | 58.70 ± 0.51 | $71.69{\pm}1.12$ | 45.27 ± 0.85 | $68.51 {\pm} 0.67$ | | | | | MKD | 69.87 ± 0.12 | $92.62 {\pm} 0.14$ | OOM | $82.46 {\pm} 0.58$ | 57.21 ± 0.31 | $71.31{\pm}0.11$ | 45.07 ± 1.16 | 68.09 ± 0.88 | | | | | RWS | $\underline{76.74 {\pm} 0.20}$ | $93.48 {\pm} 0.08$ | 95.04 ± 0.11 | 87.60 ± 0.63 | $75.11 {\pm} 1.14$ | 71.79 ± 0.82 | $44.95 {\pm} 0.82$ | $70.85{\pm}0.89$ | | | | at. | FM | $76.74 {\pm} 0.34$ | 91.55 ± 0.11 | 94.12 ± 0.21 | $85.05{\pm}0.51$ | $64.87 {\pm} 0.36$ | 71.35 ± 0.79 | $45.36{\pm}1.68$ | 70.52 ± 0.35 | | | | Feat. | FD | 76.68 ± 0.16 | $91.83 {\pm} 0.08$ | $94.20{\pm}0.16$ | 84.93 ± 0.46 | 63.21 ± 0.51 | $71.60{\pm}1.61$ | $46.44{\pm}0.96$ | $70.69{\pm}1.33$ | | | # Recipes for Effective Graph Contrastive Learning **Obs. 2.** Feature augmentations bring extra benefits to GCL. Compositional augmentations at both structure and attribute levels benefit most. **Obs. 3.** Deterministic augmentation schemes should be accompanied by stochastic augmentations. **Obs. 4.** Same-scale contrasting generally performs better. Downstream tasks of different granularities favor different contrasting modes. **Obs. 5.** Among negative-sample-based objectives, the use of InfoNCE objective leads to consistent improvements across all settings. | Obj. | NCI1 | | | PROTEINS | | | IMDB-M | | | COLLAB | | | |---------------------|--------------------|------------------|--------------------|--------------------|------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | L–L | G–L | G–G | | InfoNCE | 73.10 ± 0.83 | $72.35{\pm}0.21$ | $73.95{\pm}0.89$ | 73.28 ± 0.62 | 71.57 ± 0.92 | 75.73 ± 0.09 | 48.16 ± 0.64 | $47.36 {\pm} 0.48$ | $49.69 {\pm} 0.44$ | 73.25 ± 0.34 | 70.92 ± 0.22 | $73.72 {\pm} 0.12$ | | $_{ m JSD}$ | $73.56 {\pm} 0.32$ | 73.29 ± 0.31 | 70.93 ± 0.17 | $73.88 {\pm} 0.31$ | 73.15 ± 0.42 | 73.67 ± 0.45 | $48.31{\pm}1.17$ | $48.61 {\pm} 1.21$ | 48.31 ± 1.35 | 70.40 ± 0.31 | $72.62 {\pm} 0.35$ | 71.60 ± 0.32 | | TM | $72.43{\pm}0.21$ | 71.21 ± 0.19 | $72.31 {\pm} 0.22$ | 72.17 ± 0.51 | $72.13{\pm}1.48$ | $73.78 {\pm} 0.47$ | 48.38 ± 0.20 | 47.75 ± 1.24 | $48.58 {\pm} 0.62$ | $68.85 {\pm} 0.45$ | 69.47 ± 0.20 | $72.97{\pm}0.47$ | | BL | 77.22 ± 0.13 | 75.97 ± 0.23 | $76.70 {\pm} 0.31$ | $77.75{\pm}0.43$ | 77.32 ± 0.21 | 78.17 ± 0.59 | $54.64{\pm}0.43$ | $54.21{\pm}1.01$ | $55.32 {\pm} 0.21$ | $73.95{\pm}0.25$ | $73.35{\pm}0.24$ | 74.92 ± 0.33 | | BT | 72.49 ± 0.22 | | 70.53 ± 1.11 | 74.87 ± 0.68 | | 74.38 ± 0.56 | 48.50 ± 0.65 | | 49.53 ± 0.42 | 71.70 ± 0.53 | | 73.00 ± 0.42 | | VICReg | 72.31 ± 0.34 | _ | 71.60 ± 0.36 | 74.61 ± 1.15 | | $74.38 {\pm} 0.57$ | $46.75{\pm}1.47$ | | 50.28 ± 0.55 | $68.88 {\pm} 0.34$ | _ | 72.50 ± 0.31 | | | | | | | | | | | | | | | **Obs. 6.** Recent negative-sample-free objectives have great potential for reducing computational burden with no compromise in performance. **Obs. 7.** Existing negative mining techniques based on calculating embedding similarities bring limited benefit to GCL. Dilemma: the harder a negative sample is, the more likely it is a positive (i.e. false negative) sample.