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Motivation & Background

Why Conformer Ensembles?

Molecules are dynamic and continuously interconvert between
conformers via bond rotations and vibrations
Many molecular properties depend on the entire distribution of
thermodynamically accessible conformations
Accurate molecular representations therefore require learning
over the full conformer ensemble instead of a single geometry

Limitations of Prior Approaches

3D GNNs: Operate on one conformer ⇒ Ignore ensemble
flexibility
4D-QSAR: Require rigid alignment and common scaffolds
Multi-instance baselines: Treat conformers independently; miss
cross-conformer interactions
Structural averaging: Produces unphysical merged geometries,
sensitive to conformer alignment

Problem Definition

Molecular Topology Representations
Represent molecular topology of each molecule as G = (V , E , X)

V = {vi}|V|
i=1: Atom indices

E ⊆ V × V : Chemical bonds
X ∈ R|V|×dv: Node attributes

Conformer Ensemble Representations
For each molecule we consider n conformers C = {Ci}n

i=1 with
Ci ∈ R|V|×3 sampled from the thermodynamically accessible space
Each conformer has a Boltzmann weight (computed for ground-
truth ensemble properties but withheld from the model):
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Learning Objective

Learn (G, C) 7→ Molecular properties
Overall requirement: Functions equivariant to the product
group H = Sn × Gn

Sn: Permutation symmetry over conformers
G: Independent geometric transforms (e.g., E(3)) per conformer

The SPiCE Architecture

TL;DR: SPiCE (Symmetry-Preserving Conformer Ensemble Networks) maintains joint equivariance to conformer permutations and
geometric transformations, enabling physically meaningful molecular representations without alignment
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SPiCE processes conformer ensembles through H-equivariant interaction blocks composed of: (1) shared 3D GNN encoding, (2)
Geometric Mixture-of-Experts (GMoE), and (3) hierarchical ensemble encoding with cross-conformer integration

Benchmark Datasets & Tasks

Drugs-7.5K
• Diverse drug-like molecules
• Targets: Ionization Potential (IP), 

Electron Affinity (EA), and 
electronegativity (χ) with Mean 
Absolute Error (MAE)

Kraken
• Monodentate organophosphorus 

ligands
• Targets: Sterimol B5/L and buried 

B5/L descriptors for catalysis 
design (MAE)

CoV2

• Human-cell SARS-CoV-2 inhibition 
screen with extreme imbalance

• Evaluate ROC-AUC and Precision-
Recall (PR)

CoV2-3CL

• 3CL protease inhibition benchmark
• Precision-critical hit discovery 

reported with ROC-AUC/PR

Key Components

Shared Conformer Encoding

Shared 3D GNN layers to process conformer geometry
Hybrid node embeddings retain scalar (type-0) and vector
(type-1) channels across interaction blocks
Operating on each conformer separately yields Sn-equivariant
outputs, and the equivariant backbones ensure Gn-equivariance

Key Components

Geometric Mixture-of-Experts (GMoE)

Weight-tied scalar (type-0) and vector (type-1) branches
preserve symmetry across conformers
Invariant experts: Two-layer MLP specialists operate on scalar
channels
Equivariant experts: Gated linear transformations process vector
channels while respecting rotations
Router design: GCN scoring for scalars and inner-product scores
for vectors
Stabilize training: Top-k selection with Gumbel-Sigmoid
sampling, router z-loss, and gradual expert upcycling

Hierarchical Ensemble Encoding

A 2D GIN injects molecular topology using graph edges and a
learnable offset before passing context downstream
Cross-attention between conformer features and the GIN
summary enables selective information flow across the ensemble
Gated updates maintain the joint symmetry while integrating
conformer-level and molecule-level information

Experimental Results

Main Results
Table 1: Performance in terms of MAE (↓) for seven regression tasks (Drugs-7.5K, Kraken) and ROC
scores (↑) for two classification tasks (CoV2, CoV2-3CL). Bold and underlined values indicate best
and second-best overall performance, respectively.

Backbone Ensemble
Strategy

Drugs-7.5K (MAE, ↓) Kraken (MAE, ↓) CoV2 3CL
IP EA χ B5 L BurB5 BurL ROC (↑) ROC (↑)

▶ 1D String-based and 2D Topological Approaches
Fingerprint+RF [54] 0.5833 0.5277 0.3130 0.4760 0.4303 0.2758 0.1521 0.6071 0.9013

E3FP+RF [55] 0.6217 0.5774 0.3464 0.6249 0.5535 0.3692 0.1908 0.6046 0.7676
GIN [50] 0.5575 0.5116 0.2892 0.3128 0.4003 0.1719 0.1200 0.3708 0.5942

GIN-VN [56] 0.5398 0.5160 0.2937 0.3567 0.4344 0.2422 0.1741 0.4832 0.7387
GraphGPS [57] 0.5480 0.5054 0.2863 0.3450 0.4363 0.2066 0.1500 0.5601 0.8387

▶ 3D Single-Conformer Graph Neural Networks with Random Conformer Sampling [51]

PaiNN [37] 0.5557 0.5127 0.2924 0.3443 0.4471 0.2395 0.1673 0.2997 0.8368
ClofNet [13] 0.6316 0.6008 0.3615 0.4473 0.6369 0.3216 0.2426 0.5233 0.7562

Equiformer [34] 0.5471 0.4898 0.2887 0.2709 0.3759 0.2019 0.1526 0.4577 0.8035
ViSNet [58] 0.5393 0.4855 0.2985 0.3828 0.4495 0.2400 0.1755 0.5011 0.4774

▶ Conformer Ensemble Approaches
ConfNet [60] 0.5760 0.5359 0.3057 0.4469 0.4680 0.2686 0.1657 0.5010 0.4930

ConAN-FGW [31] 0.5471 0.4945 0.2891 0.3242 0.5178 0.2026 0.1492 0.6340 0.9180

PaiNN
[37]

Mean 0.5410 0.4966 0.2963 0.2877 0.3950 0.1817 0.1472 0.5722 0.8850
DeepSets 0.5396 0.5091 0.2982 0.2225 0.3619 0.1693 0.1324 0.5802 0.6808
Attention 0.6318 0.5985 0.3488 0.3496 0.4109 0.2123 0.1506 0.4179 0.6984
SPiCE 0.5281 0.4929 0.2792 0.2178 0.3548 0.1564 0.1292 0.5910 0.8880

ClofNet
[13]

Mean 0.5935 0.5441 0.3121 0.3986 0.5674 0.2857 0.2327 0.3900 0.7580
DeepSets 0.5912 0.5533 0.3153 0.3314 0.5375 0.2532 0.1983 0.6208 0.7628
Attention 0.6694 0.5949 0.3578 0.4979 0.6118 0.3353 0.2502 0.3707 0.8182
SPiCE 0.5747 0.5283 0.3059 0.3193 0.4903 0.2477 0.1913 0.6730 1.0000

Equiformer
[34]

Mean 0.5457 0.4932 0.2977 0.2303 0.3830 0.1680 0.1259 0.5601 0.8387
DeepSets 0.5404 0.4888 0.2990 0.2564 0.3772 0.1782 0.1234 0.5125 0.7134
Attention 0.5488 0.4923 0.2896 0.3187 0.4508 0.1673 0.1425 0.3882 0.7881
SPiCE 0.5318 0.4830 0.2816 0.2241 0.3456 0.1611 0.1229 0.5650 0.8405

ViSNet
[58]

Mean 0.5593 0.4927 0.2862 0.2811 0.3970 0.1874 0.1469 0.6035 0.7447
DeepSets 0.5280 0.4987 0.2846 0.3104 0.4113 0.1716 0.1314 0.6626 0.4160
Attention 0.5593 0.4988 0.2944 0.3755 0.4195 0.2384 0.1394 0.5262 0.7158
SPiCE 0.5384 0.4538 0.2814 0.2715 0.3807 0.1657 0.1277 0.6890 0.7195

but makes training more challenging due to computational complexity, and model performance
often shows strong task dependencies [30, 51]. Despite these challenges, SPiCE consistently
achieves superior performance compared to baseline methods, outperforming in 34 out of 36
total experimental configurations across all 9 tasks and 4 base models and often surpassing the
state-of-the-art model ConAN-FGW.

Notably, SPiCE demonstrates robust performance across datasets of varying sizes, from the smaller
Kraken to the larger Drugs-7.5K and CoV2 datasets, suggesting that our architecture effectively
balances computational efficiency with modeling capacity. The improvements are particularly
significant with PaiNN, though performance gains vary across tasks, which is consistent with past
observation in conformer ensemble modeling where different structural features may dominate
different properties.

Regression tasks. On the Drugs-7.5K and Kraken datasets, SPiCE demonstrates consistent improve-
ments across all backbone architectures. For Drugs-7.5K, SPiCE achieves relative MAE reductions
of 2.79%, 7.89%, and 5.78% for IP, EA, and χ respectively, compared to the second-best strategy.
This is due to its strong geometric feature extraction capabilities complementing our selective in-
formation processing. The mid-sized Kraken dataset shows even more improvements, with MAE
reductions of 3.66%, 8.78%, 7.61%, and 3.53% across its four targets (B5, L, BurB5, and BurL). The
most significant improvement is observed with ClofNet on BurB5, where MAE reduces from 0.5375
to 0.4903. It demonstrates that SPiCE can effectively enhance even simple yet powerful equivariant
backbones, a pattern we also observe in classification results.
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Observations:

SOTA across 34/36 configurations
Regression (Drugs-7.5K, Kraken): 3–9% MAE improvements
over the best baselines
Classification (CoV2, CoV2-3CL): High ROC-AUC and robust
to severe class imbalance

Ablation Studies
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