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Abstract

Molecular representation learning has emerged as a promising approach for model-
ing molecules with deep learning in chemistry and beyond. While 3D geometric
models effectively capture molecular structure, they typically process single static
conformers, overlooking the inherent flexibility and dynamics of molecules. In
reality, many molecular properties depend on distributions of thermodynamically
accessible conformations rather than single structures. Recent works show that
learning from conformer ensembles can improve molecular representations, but
existing approaches either produce unphysical structures through averaging or
require restrictive molecular alignment. In this paper, we propose Symmetry-
Preserving Conformer Ensemble networks (SPiCE), which introduces two key
innovations: (1) geometric mixture-of-experts for selective processing of scalar and
vector features, and (2) hierarchical ensemble encoding that combines ensemble-
level representation with cross-conformer integration. Crucially, SPiCE ensures
physically meaningful representations by maintaining joint equivariance to ge-
ometric transformations of individual conformers and conformer permutations.
Extensive experiments demonstrate that SPiCE consistently outperforms existing
conformer ensemble methods and state-of-the-art structural aggregation models
across quantum mechanical and biological property prediction tasks.

1 Introduction

Molecular Representation Learning (MRL) has emerged as a powerful tool at the intersection of chem-
istry and machine learning, offering a data-driven approach to encode discrete molecular structures
into continuous feature representations [1, 2]. This enables efficient predictions of molecular proper-
ties without expensive quantum mechanical calculations for various downstream tasks including drug
discovery, materials design, and chemical reaction prediction [3–5].

The field has evolved from early appraoches using simplified molecular representations such as
SMILES strings [6] and molecular fingerprints [7, 8] to sophisticated geometric deep learning
methods that directly incorporate 2D topological and 3D geometric information [9]. Among these
advances, 3D Graph Neural Networks (GNNs) have gained popularity by learning from molecular
geometries while respecting fundamental physical symmetries. These models can be categorized as
invariant (producing identical outputs regardless of molecular orientation and translation) [10–12],
SE(3)–equivariant (transforming consistently under rotations and translations) [13, 14], and E(3)–
equivariant (additionally respecting reflection symmetry) [15, 16]. By incorporating these inductive
biases, geometric models achieve both improved sample efficiency and better generalization.

However, current 3D MRL models face a fundamental limitation: they typically encode individual
conformer structures as if molecules were rigid, static entities. In reality, molecules exist as dynamic
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Figure 1: (a) SPiCE processes conformer ensembles through multiple interaction blocks, followed by
node-level pooling to obtain conformer representations and ensemble-level pooling for final molecular
embeddings. (b) H-equivariant interaction block that maintains joint equivariance to conformer
permutation (Sn) and geometric transformations (Gn), composed of shared conformer encoding,
geometric mixture-of-experts, and cross-conformer integration. (c) Cross-conformer integration layer
combining ensemble encoding through a 2D GNN with attention-based integration. (d) Geometric
mixture-of-experts (GMoE) with separate routing for scalar (type-0) and vector (type-1) features.
(e) Invariant and equivariant expert networks: equivariant experts preserve rotational symmetry
through specialized linear transformations with scalar feature gating for enhanced expressivity.

systems that continuously interconvert between different conformational states through bond rotations,
vibrational motions, and intermolecular interactions [17]. Therefore, a conformer ensemble, which
refers to the collection of thermodynamically accessible molecular conformations at equilibrium,
provides a more complete molecular representation [18]. This is particularly important because many
experimentally observable properties depend on the entire distribution of conformers rather than a
single static structure. For example, protein-ligand binding often involves conformational selection
where proteins recognize specific ligand conformations, and reaction mechanisms frequently depend
on the accessibility of particular geometric configurations [19, 20].

Existing approaches to conformer ensemble modeling fall into three categories. Traditional chemin-
formatics methods like 4D-QSAR [21–23] extend classical mesh-based 3D-QSAR by incorporating
conformational information into grid-based molecular descriptors. These methods map molecular
properties onto regular 3D lattices for each conformer to produce molecular shape spectra, but
require rigid molecular alignment and are limited to datasets with common substructures. Multi-
instance learning methods have been adapted from computer vision to treat conformer ensembles as
bags of instances [24–28]. However, these approaches typically process conformers independently
and then aggregate conformer representations through simple pooling operations, which discard
cross-conformer interactions and cannot maintain geometric symmetrices. Additionally, structural
aggregation methods [29–31] attempt to combine information from multiple conformers through
averaging or clustering procedures. While these can leverage geometric models, they often produce
unphysical structures and are highly sensitive to alignment methods.

To address these limitations, we present Symmetry-Preservng Conformer Ensemble networks
(SPiCE), a novel model that achieves joint equivariance to both permutations of conformer ensemble
(Sn) and geometric transformations of individual conformers (Gn). SPiCE processes conformer
ensembles through a series of H–equivariant interaction blocks, where H = Sn ×Gn. Each block is
composed of three key components: (1) shared conformer encoding with weight-tied 3D GNNs that
process each conformer while preserving geometric equivariance, (2) a Geometric Mixture-of-Experts
(GMoE) layer that separately routes scalar and vector features through specialized expert networks,
enabling type-aware selective processing, and (3) hierarchical ensemble encoding that combines
molecular-level context with selective cross-conformer integration through attention mechanisms.
Importantly, SPiCE is able to capture both geometric and topological relationships while respecting
fundamental geometric symmetries, effectively processing conformer ensembles without requiring
alignment or generating unphysical intermediate structures.
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We validate SPiCE through comprehensive experiments across diverse molecular property prediction
tasks, ranging from quantum mechanical properties to biological activities. Using various 3D GNN
backbones and datasets of different scales, we demonstrate consistent improvements over existing
conformer ensemble methods. Our analysis reveals scaling behaviors with dataset size, suggesting
reliable deployment across different data regimes in real-world applications. Through extensive
ablation studies, we justify key architectural choices including the GMoE design, sparse upcycling
strategy, and optimal expert granularity for conformer ensemble modeling.

2 Preliminaries

2.1 Problem Definition

A molecule is represented as a molecular graph G = (V, E ,X), where V = {vi}|V|
i=1 denotes the

node set of atoms, and E ⊆ V × V represents chemical bonds between atoms. The node attributes
are represented in X ∈ R|V|×dv . For a given molecule, we consider a set of n discrete conformers
C = {Ci}ni=1, where each Ci ∈ R|V|×3 represents atomic 3D coordinates. These conformers are
sampled from the thermodynamically-accessible conformational space. Each conformer is associated
with a Boltzmann weight pi = exp(−ei/kBT )

/∑
j exp(−ej/kBT ), where ei is the energy of

conformer Ci, kB is the Boltzmann constant, and T is temperature. We note that these Boltzmann
weights are not provided to the model but rather are used to compute ground-truth ensemble properties.

Our goal is to learn a mapping from the conformer ensemble (G, C) to molecular properties while
preserving both permutation invariance of the ensemble and geometric symmetries of individual
conformers. This requires learning functions that are equivariant to the product group H = Sn ×Gn,
where Sn is the permutation group over n conformers and G is the geometric symmetry group.
Typically, G is taken as the Euclidean group E(3) of translations, rotations and reflections, or the
special Euclidean group SE(3) of translations and rotations. We allow individual transformations on
each conformer individually and independently, hence the overall geometric transformation Gn.

2.2 Basics of Symmetry Properties

On permutation group Sn. Our work builds on the characterization of linear Sn–equivariant
layers [32], which can be decomposed into intra-conformer interactions and a global G–invariant
aggregation. We formalize this as a theorem and prove it in Appendix C.1. This provides a practical
construction of H–equivariant layers, by processing individual conformers through G–equivariant
functions and capturing ensemble interactions via a G–invariant function applied to aggregated
features. This generalizes Deep Sets [33] to geometric symmetries in molecular conformers.

On geometry group G. We decompose geometric transformations into translations and rotations
(including reflections for E(3)): G = T ⋊R. Following Equiformer [34], we use type-0 and type-1
to express R–invariant and equivariant features and list basic symmetry-preserving operations below.
Lemma 1. The following operations preserve symmetry:

(1) Any function f(s) of an R–invariant feature s is R–invariant;
(2) The product s · v between R–invariant feature s and R–equivariant feature v is R–equivariant.
(3) The inner product ⟨v1,v2⟩ between two R–equivariant features v1, v2 is R–invariant.

3 Method

The overall architecture of SPiCE is illustrated in Figure 1. SPiCE employs a hierarchical ar-
chitecture that enables structural interaction across atoms and conformers. Its core is a series of
H–equivariant interaction blocks designed to process conformer ensembles while maintaining the rel-
evant symmetries. Intra-conformer learning is performed using weight-shared equivariant 3D GNNs,
which jointly handle scalar and vector features. To support type-specific and selective information
processing, we design a Geometric Mixture-of-Experts (GMoE) module. The resulting features are
then pooled to form an ensemble representation with 2D GNNs that capture the topological structure
of the molecular system. These molecule- and conformer-level features are subsequently combined
through a cross-conformer integration module. Following the interaction blocks, we apply node-level
pooling within each conformer to generate conformer-level embeddings and conformer-level pooling
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across the ensemble to obtain the final molecular embedding. This embedding is then passed through
a prediction head to produce the output property prediction. A PyTorch-like pseudocode of SPiCE is
provided in Appendix B.

Overall H–equivariance. We specify the input and output invariance and equivariance types for
every module in the following sections. Since each module preserves symmetry and the output
symmetrical properties of each module match the input properties of each subsequent module, the
overall symmetry with respect to H is guaranteed through the composition of all modules.

Other remarks. We batch over both conformers and molecules, hence our features shapes often start
with Rn×|V|×···. We denote N = n × |V| as the total number of atoms across all conformers and
interchangeably use RN×··· to express dimensionality. Typically, the second-to-last dimension of our
features (dim=-2) is either 1 for R–invariant scalar features or 3 for R–equivariant vector features.
We often concatenate these features into a single hybrid feature with size 4 over this dimension,
and call a hybrid feature R–equivariant when the corresponding type-0 feature is R–invariant and
type-1 feature is R–equivariant. Many modules of our model perform on each conformer separately,
in which case Sn–equivariance automatically holds, and individual G–symmetries lead to global
Gn–symmetry.

3.1 Input Representation and Feature Construction

For a conformer ensemble, each H–equivariant interaction block operates on graph node features
that combine atomic and geometric information. For a molecule with m atoms, the input consists of:
(a) atomic numbers z ∈ Z|V|

+ , which are embedded into initial node features X ∈ R|V|×d through a
learnable embedding layer, and (b) atomic coordinates {ci}mi=1 where ci ∈ R3. From the coordinates,
we compute relative position vectors ρij = ci − cj .

The H–equivariant interaction blocks process both features xi and geometric vectors ρij to construct
messages that respect the underlying symmetries. To encode distance information effectively, we
transform the relative distances r = |ρij | using a set of radial basis functions. Specifically, we employ
Gaussian radial basis functions (RBF) ϕk(r) = exp(−γ(r − µk)

2), where {µk}Kk=1 are equally
spaced centers and γ controls the width of the Gaussians [10]. These radial features are then processed
through a three-layer neural network, with layer normalization [35] and SiLU activation [36] after
the first two linear layers. The output of this network parametrizes the message construction in the
interaction blocks. Thanks to the RBF positional encoding, our encoded features are all T–invariant,
therefore the Tn–invariance of the entire model is already guaranteed.

3.2 H–Equivariant Interaction Blocks

As the model is equipped with L interaction blocks, here we analyze the architecture within the l-th
interaction block, and mostly omit the layer index l in the following discussions for simplicity.

3.2.1 Shared Conformer Encoding

With a conformer set with hybrid node feature as X = (Xs,Xv) ∈ Rn×|V|×4×d, we employ shared
3D GNN layers to process conformer geometric information. A 3D GNN layer consists of two key
learnable functions: message construction Φ and feature update Ψ, which can be formulated as

hi = Ψ

xi,
⊕
j∈Ni

Φ(xi,xj , cij)

 , (1)

where hi = (hs
i,h

v
i ), h

s
i ∈ R1×d represents the scaler (type-0, rotationally invariant) feature for atom

i with 1 tensor component and d channels, and hv
i ∈ R3×d represents the vector (type-1, rotationally

equivariant) feature for atom i with 3 tensor components and d channels. For atom i in an arbitrary
conformer, Ni denotes the set of its neighbors, xi = (xs

i,x
v
i ) ∈ R4×d represent the concatenated

scalar and vector features, cij = (cs
ij , c

v
ij) ∈ R4×dm are concatenated scalar and vector messages

between atom i and j, d, dm are feature dimensions, and
⊕

denotes message aggregation over
neighbors Ni (typically summation).
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For the first interaction block (l = 0), Xs (type-0) contains initial molecular features including
embeddings of atomic numbers z, distance-based radial basis functions, and topological descriptors,
while Xv (type-1) contains initial geometric features including embeddings of relative position vectors
and directional bond features. For subsequent interaction blocks (l > 0), the features include both the
initial features above plus the processed outputs H̃

s
and H̃

v
from the previous interaction block.

The 3D GNN interaction layer outputs hybrid features H = (Hs,Hv) ∈ Rn×|V|×4×d, where hi

denotes the hybrid node embedding for the i-th atomic node within this tensor. We also process H
with a residual connection and an Equivariant Layer Normalization (ELN), which is a generalized
layer normalization for G–equivariant features [34]. Here each conformer is operated separately,
therefore the output H is Sn–equivariant; plus, all 3D GNNs are pre-selected to be equivariant, so it
is also independently R–equivariant for each conformer.

We note that our framework is agnostic to the specific architecture of the message and update
functions. They can be either Cartesian equivariant models (e.g., PaiNN [37]) that operate directly in
Cartesian coordinates to construct messages and update features, or spherical equivariant models that
employ spherical harmonics and tensor products for message passing (e.g., Equiformer [34]), with
channel-mixing and gated non-linear functions for feature updates.

3.2.2 Geometric Mixture-of-Experts (GMoE)

When processing molecular conformers, certain atoms or structural features may be more relevant
or important than others for specific properties. Graph pooling approaches [38–40] achieve this
selective processing by focusing computation on important nodes through attention mechanisms.
This naturally extends to Mixture-of-Experts (MoE) architectures [41, 42], which specialize multiple
neural networks for selective information passing with a learnable routing mechanism.

Since scalar and vector features require distinct handling due to their different transformation
properties under symmetry operations, we propose GMoE as shown in Figure 1(d) that maintains
equivariance for vector features while ensuring invariance for scalar features through distinct router
and expert groups. Note that all operations in this section operate on each node (and hence each
conformer) separately, therefore Sn–equivariance is already guaranteed, and any claim on rotational
R– invariance / equivariance automatically extends to Rn.

GMoE processes the two types of features in H = (Hs,Hv) ∈ RN×4×d using separate modules. For
a given node i, let hs

i ∈ R1×d and hv
i ∈ R3×d denote its scalar and vector features, respectively. We

extend the standard Mixture of Experts (MoE) formulation [43, 44] to handle scalar and vector features
independently, introducing two sets of routers and experts that process invariant and equivariant
features respectively. The numbers of invariant and equivariant experts are denoted by NI and NE.

Permutation-equivariant router design. For each node i, the concatenated routing weights r̂i =
(r̂s

i, r̂
v
i ) ∈ RNI+NE for scalar and vector branches are computed through a two-stage process. First,

the corresponding routing networks rs(hs
i) and rv(hv

i ), both with R–invariant outputs, compute
initial scores ri = (rs

i, r
v
i ) ∈ RNI+NE of (NI, NE) experts for scalar and vector features. Following

SAGPool [38], our scalar router leverages a GCN layer [45] to compute routing scores, and our vector
router calculates a linearly transformed inner product of features:

rs(hs
i) = softmax

 ∑
j∈N (i)

hs
jW

s/
√

didj + b

 , (2)

rv(hv
i ) = softmax

(
hv
i
Thv

iW
v
)
. (3)

where di represents the number of neighbors of node i. The R-invariance of rv is due to (3) of
Lemma 1: operation hv

i
Thv

i performs inner products over the equivariant dimension. The scores then
undergo top-k selection and normalization:

r′
s
e,i =

{
rs
e,i, if rs

e,i ∈ top-k
(
{rs

e,i}
NI
e=1

)
,

0, otherwise,
r̂s
e,i =

r′
s
e,i∑k

e=1 r
′s
e,i

, (4)

where rs
e,i refers to the score for the i-th atom of the e-th expert, and k is the pre-set number of

selected experts for each type of hybrid features. The computation for r̂v
e,i shares the same logic as

r̂s
e,i. The resulting {r̂i = (r̂s

i, r̂
v
i )}i∈C×V is Rn–invariant from (1) of Lemma 1.
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Invariant and equivariant experts. Each Invariant Expert (IE) is implemented as a two-layer MLP
with SiLU activations followed by layer normalization. The output of the e-th IE can be defined as
Fs
e = f s

e(H
s) ∈ RN×1×d. These outputs are also Rn–invariant from (1) of Lemma 1. Meanwhile,

for maintaining geometric symmetries, each Equivariant Expert (EE) is formulated as:

f v
e,i = hv

iWe diag(MLP(hs
i)), (5)

where f v
e,i is the output of the e-th expert on node i, and the concatenated output Fv

e = f v
e (H

v,Hs) ∈
RN×4×d. Here We ∈ Rd×d is a learnable weighting matrix, and diag constructs a diagonal matrix
from a vector. EE is Rn–equivariant from (2) of Lemma 1 since hv

i is equivariant, while both We

and diag(MLP(hs
i)) are invariant, the latter being a consequence of (1) of Lemma 1.

Node-wise weighted summarization. With selected expert weights and expert output for both scalar
and vector features, a node-wise weighted summarization is employed for dynamic feature ensemble.
For node i ⊆ C × V , the scalar and vector representations can be calculated as:

h̃s
i =

∑
e

r̂s
e,if

s
e,i : R1×d, h̃v

i =
∑
e

r̂v
e,if

v
e,i : R3×d. (6)

For a molecular conformer ensemble, the output of MoE module is represented as H̃ = (H̃
s
, H̃

v
) ∈

RN×4×d, where the H̃
s

and H̃
v

are Rn–invariant and Rn–equivariant, respectively from (1) and (2)
of Lemma 1. Hence, the hybrid feature H̃ is Rn–equivariant.

Router training and regularization. To ensure balanced expert utilization, we employ three key
mechanisms: (1) Router z-loss to punish extreme routing decisions [46]:

LR(r) =
1

N

N∑
i=1

(
log

NI∑
e=1

exp(rs
e,i)

2 + log

NE∑
e=1

exp(rv
e,i)

2

)
, (7)

where rv
e,i and rs

e,i represents the Rn–invariant score from invariant and equivariant routers for the
i-th node of the e-th expert, and NI and NE are the number of invariant and equivariant experts.

(2) Top-k expert selection with Gumbel-Sigmoid sampling [47, 48], where the Gumbel noise allows
the experts to be better differentiated in the process of training:

Gumbel-Sigmoid(x) = Sigmoid(x+G′ −G′′), (8)

where routing logits rs
i,e or rv

i,e are input x, and G′ and G′′ are independent Gumbel noise samples.

(3) Expert upcycling strategy [49] that gradually increases the number of active experts during training.
Upcycling combined with the Gumbel-Sigmoid technique allows us to overcome the limitations of
static expert selection and achieve improved performance in our geometry-aware sparse architecture.

3.2.3 Ensemble Encoding

The ensemble encoding block enables cross-conformer interactions while preserving Sn–equivariance.
Let H = (1/n)

∑n
c=1 H̃

s
c ∈ R|V|×1×d denote the mean-pooled representation of Sn–equivariant, Rn–

invariant scalar features H̃
s

across all conformers, which is Sn–invariant and Rn–invariant. This
is processed by a Graph Isomorphism Network (GIN) layer [50], incorporated with 2D topological
graph edge information. The propagation rule updates node i embeddings as:

hi = φ

(1 + ϵ)hi +
∑

j∈N (i)

hj

 , (9)

where ϵ is learnable and φ is a two-layer perceptron with ReLU activation. Let Hs ∈ R|V|×1×d

denote the final node embedding matrix after the GIN interaction layer, which aggregates information
across the conformer ensemble, and is Sn–invariant and Rn–invariant from (1) of Lemma 1.

3.2.4 Gated Aggregation

While the GMoE mechanism handles self-attention within each conformer, we employ gated ag-
gregation to facilitate information passing between conformer-level and molecular-level features.
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This cross-attention mechanism integrates conformer-level features Hs ∈ R(n×|V|)×1×d and the
aggregated molecular-level GIN output features Hs ∈ R|V|×1×d. For ease of discussion, we squeeze
the scalar dimension for both representations (dim=-2) in the following matrix multiplications. The
gated integration is defined as Xs = Attn(Hs,Hs), where the attention mechanism computes:

Q = HsWQ, K = HsWK , V = HsWV , (10)

Attn(Hs,Hs) = softmax

(
QKT

√
dk

)
V . (11)

Here, WQ ∈ Rd×dk ,WK ∈ Rd×dk ,WV ∈ Rd×d are learnable projection matrices, dk is the
dimension of the attention space. After reshaping, we have the output Xs ∈ Rn×|V|×1×d. This
mechanism enables each conformer to selectively incorporate molecular-level and inter-conformer
information, facilitating better ensemble representation learning. Since every input here are Rn–
invariant, the output Xs is also Rn–invariant from (1) of Lemma 1. We further prove in Section C.2
that Xs is also Sn–equivariant.

Finally, we denote X(l+1) =
[
Xs, H̃

v]
∈ RN×4×d as the next-level hybrid input feature that satisfies

Sn–equivariant and Rn–equivariant, thus completing our single H–equivariant layer architecture.

3.3 Model Training

The proposed architecture consists of an equivariant graph neural network with L interaction layers.
Each interaction layer contains NI invariant experts and NE equivariant experts to process type-0 and
type-1 feature separately. For regression tasks, the objective is a weighted sum of the standard Mean
Squared Error (MSE) loss and an auxiliary z-loss term. For classification tasks, a binary classification
head equipped with sigmoid activation is attached to the final molecular representations and we use a
binary cross entropy loss for model training.

4 Experiments

In this section, we present comprehensive experimental evaluations of SPiCE across multiple
molecular datasets and tasks. We first describe our datasets and experimental setup, then present
results and analyses. We aim to answer the following research questions:

• RQ1: Performance. How does SPiCE perform across different molecular property prediction
tasks compared to state-of-the-art conformer ensemble methods?

• RQ2: Scalability. How does the performance of SPiCE scale with dataset size?
• RQ3: Architecture design. What is the impact of key architectural choices in SPiCE?

4.1 Experimental Setup

Datasets. We evaluate SPiCE on four datasets spanning both regression and classification tasks: (1)
Drugs-7.5K, obtained by downsampling 10% of Drugs-75K [51] with a fixed random seed due to
computational constraints, with three quantum mechanical properties: IP, EA, and χ, (2) Kraken [52]
with four 3D ligand descriptors: (Sterimol B5, Sterimol L, BurB5, BurL), and (3-4) CoV2 and CoV2-
3CL from GEOM-Drugs [53]: CoV2 measures general inhibition in human cells, while CoV2-3CL
specifically targets the 3CL protease inhibition. Prior to training, we perform preprocessing including
conformer deduplication, clustering, and selection following the methodology described in prior
works [30, 51]. We present detailed statistics and descriptions of datasets in Appendix E.

Metrics. Following prior works, we use Mean Absolute Error (MAE) for regression tasks and
Receiver Operating Characteristic (ROC) area under the curve for classification tasks, particularly
appropriate for the highly imbalanced datasets CoV2 and CoV2-3CL.

Baselines. We evaluate SPiCE against three categories of baselines. (1) 1D string-based and 2D
topological models, including fingerprints with random forest [54], extended 3D fingerprints with
random forest [55], and 2D GNN models (GIN [50], GIN with virtual nodes [56], and GraphGPS [57]).
(2) 3D single-conformer GNNs with random conformer sampling [51], including PaiNN [37],
ViSNet [58], ClofNet [13], and Equiformer [34]. (3) Conformer ensemble methods: For each
3D GNN backbone, we implement three conformer aggregation strategies following [51]: mean
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Table 1: Performance in terms of MAE (↓) for seven regression tasks (Drugs-7.5K, Kraken) and ROC
scores (↑) for two classification tasks (CoV2, CoV2-3CL). Bold and underlined values indicate best
and second-best overall performance, respectively.

Backbone Ensemble
Strategy

Drugs-7.5K (MAE, ↓) Kraken (MAE, ↓) CoV2 3CL
IP EA χ B5 L BurB5 BurL ROC (↑) ROC (↑)

▶ 1D String-based and 2D Topological Approaches
Fingerprint+RF [54] 0.5833 0.5277 0.3130 0.4760 0.4303 0.2758 0.1521 0.6071 0.9013

E3FP+RF [55] 0.6217 0.5774 0.3464 0.6249 0.5535 0.3692 0.1908 0.6046 0.7676
GIN [50] 0.5575 0.5116 0.2892 0.3128 0.4003 0.1719 0.1200 0.3708 0.5942

GIN-VN [56] 0.5398 0.5160 0.2937 0.3567 0.4344 0.2422 0.1741 0.4832 0.7387
GraphGPS [57] 0.5480 0.5054 0.2863 0.3450 0.4363 0.2066 0.1500 0.5601 0.8387

▶ 3D Single-Conformer Graph Neural Networks with Random Conformer Sampling [51]

PaiNN [37] 0.5557 0.5127 0.2924 0.3443 0.4471 0.2395 0.1673 0.2997 0.8368
ClofNet [13] 0.6316 0.6008 0.3615 0.4473 0.6369 0.3216 0.2426 0.5233 0.7562

Equiformer [34] 0.5471 0.4898 0.2887 0.2709 0.3759 0.2019 0.1526 0.4577 0.8035
ViSNet [58] 0.5393 0.4855 0.2985 0.3828 0.4495 0.2400 0.1755 0.5011 0.4774

▶ Conformer Ensemble Approaches
ConfNet [60] 0.5760 0.5359 0.3057 0.4469 0.4680 0.2686 0.1657 0.5010 0.4930

ConAN-FGW [31] 0.5471 0.4945 0.2891 0.3242 0.5178 0.2026 0.1492 0.6340 0.9180

PaiNN
[37]

Mean 0.5410 0.4966 0.2963 0.2877 0.3950 0.1817 0.1472 0.5722 0.8850
DeepSets 0.5396 0.5091 0.2982 0.2225 0.3619 0.1693 0.1324 0.5802 0.6808
Attention 0.6318 0.5985 0.3488 0.3496 0.4109 0.2123 0.1506 0.4179 0.6984
SPiCE 0.5281 0.4929 0.2792 0.2178 0.3548 0.1564 0.1292 0.5910 0.8880

ClofNet
[13]

Mean 0.5935 0.5441 0.3121 0.3986 0.5674 0.2857 0.2327 0.3900 0.7580
DeepSets 0.5912 0.5533 0.3153 0.3314 0.5375 0.2532 0.1983 0.6208 0.7628
Attention 0.6694 0.5949 0.3578 0.4979 0.6118 0.3353 0.2502 0.3707 0.8182
SPiCE 0.5747 0.5283 0.3059 0.3193 0.4903 0.2477 0.1913 0.6730 1.0000

Equiformer
[34]

Mean 0.5457 0.4932 0.2977 0.2303 0.3830 0.1680 0.1259 0.5601 0.8387
DeepSets 0.5404 0.4888 0.2990 0.2564 0.3772 0.1782 0.1234 0.5125 0.7134
Attention 0.5488 0.4923 0.2896 0.3187 0.4508 0.1673 0.1425 0.3882 0.7881
SPiCE 0.5318 0.4830 0.2816 0.2241 0.3456 0.1611 0.1229 0.5650 0.8405

ViSNet
[58]

Mean 0.5593 0.4927 0.2862 0.2811 0.3970 0.1874 0.1469 0.6035 0.7447
DeepSets 0.5280 0.4987 0.2846 0.3104 0.4113 0.1716 0.1314 0.6626 0.4160
Attention 0.5593 0.4988 0.2944 0.3755 0.4195 0.2384 0.1394 0.5262 0.7158
SPiCE 0.5384 0.4538 0.2814 0.2715 0.3807 0.1657 0.1277 0.6890 0.7195

pooling, DeepSets [33], and self-attention [59]. We also compare against specialized ensemble
models: ConfNet [60] and ConAN-FGW [31]. Please refer to Appendix F for details of baselines.

Note that SPiCE is designed as a plug-and-play framework that requires compatible backbones
with equivariant representations. While we primarily use equivariant models due to their higher
representational capabilities, we also evaluate invariant 3D models as baselines in Appendix H.

Experimental settings. Following prior works, for regression datasets, we randomly partition data
into training, validation, and test sets with a 7:1:2 ratio, while classification datasets use fixed public
splits. We optimize models using AdamW [61] with a cosine decay scheduler. Training terminates if
the loss shows no improvement for 400 consecutive epochs. To ensure consistent comparison, we set
the latent feature dimension to 128 and limit each molecule to a maximum of 20 conformers. For
classification tasks, we address label imbalance by maintaining a 1:1 ratio of positive to negative
samples during training. Other configurations follow the original settings from respective papers.
The details of experimental settings are provided in Appendix D.

4.2 Main Results (RQ1)

Table 1 summarizes the performance across all tasks. Previous studies have established that conformer
ensemble learning presents unique challenges: explicit set encoding can improve performance
but makes training more challenging due to computational complexity, and model performance
often shows strong task dependencies [30, 51]. Despite these challenges, SPiCE consistently
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achieves superior performance compared to baseline methods, outperforming in 34 out of 36
total experimental configurations across all 9 tasks and 4 base models and often surpassing the
state-of-the-art model ConAN-FGW.

Notably, SPiCE demonstrates robust performance across datasets of varying sizes, from the smaller
Kraken to the larger Drugs-7.5K and CoV2 datasets, suggesting that our architecture effectively
balances computational efficiency with modeling capacity. The improvements are particularly
significant with PaiNN, though performance gains vary across tasks, which is consistent with past
observation in conformer ensemble modeling where different structural features may dominate
different properties.

Regression tasks. On the Drugs-7.5K and Kraken datasets, SPiCE demonstrates consistent improve-
ments across all backbone architectures. For Drugs-7.5K, SPiCE achieves relative MAE reductions
of 2.79%, 7.89%, and 5.78% for IP, EA, and χ respectively, compared to the second-best strategy.
This is due to its strong geometric feature extraction capabilities complementing our selective in-
formation processing. The mid-sized Kraken dataset shows even more improvements, with MAE
reductions of 3.66%, 8.78%, 7.61%, and 3.53% across its four targets (B5, L, BurB5, and BurL). The
most significant improvement is observed with ClofNet on BurB5, where MAE reduces from 0.5375
to 0.4903. It demonstrates that SPiCE can effectively enhance even simple yet powerful equivariant
backbones, a pattern we also observe in classification results.

Classification tasks. SPiCE shows strong performance on our highly imbalanced classification
tasks. On the moderately imbalanced CoV2-3CL dataset (∼1:10 positive-negative ratio), the PaiNN
backbone achieves the most notable improvements, with ROC-AUC increasing by 10.95% and
reaching perfect precision. The more challenging CoV2 dataset (∼1:60 ratio) shows similar trends,
increasing ROC-AUC by 8.41% and thus highlighting the effectiveness of SPiCE and its robustness
to extreme class imbalance.

These comprehensive results highlight the effectiveness of our geometry-aware interaction networks
in selectively integrating geometric and topological molecular information. The consistent im-
provements across diverse tasks, backbones, and data distributions suggest that SPiCE successfully
captures meaningful patterns in conformer ensembles.

4.3 Analysis of Model Scaling (RQ2)
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Figure 2: (a) Performance as
the dataset size increases from
7.5K to 75K molecules. (b)
Training loss trajectories of the
first 200 epochs for 30%, 70%,
and 100% of 75K molecules.

Processing conformer ensembles introduces significant computational
overhead, making it essential to understand how model performance
scales with dataset size. To investigate the scalability of SPiCE,
we conduct experiments on the EA task using the PaiNN backbone.
Starting with the full Drugs-75K dataset (75,099 molecules, 558,002
conformers) [51], we create random subsets ranging from 10% to
100% of the data at 10% intervals.

Our analysis reveals two findings. First, SPiCE shows consistent im-
provements with increasing data size, reducing MAE from 0.4929
(7.5K molecules) to 0.4386 (75K molecules). As shown in Fig-
ure 2(a), the approximately linear scaling relationship suggests that our
geometry-aware architecture effectively leverages additional training
data without encountering performance plateaus that often character-
ize capacity-limited models. Second, we plot the loss trajectories at
30%, 70%, and 100% dataset sizes for the first 200 epochs in Fig-
ure 2(b). They all show similar patterns despite varying data scales.
This consistent optimization behavior suggests that SPiCE maintains
stable learning characteristics across different dataset sizes, making
it suitable for applications with varied data.

4.4 Ablation Studies (RQ3)

To better understand the key design choices, we conducted extensive ablation studies using PaiNN as
the backbone and EA as the task. We disabled or modified individual components of SPiCE while
keeping other parts unchanged. All experiments used the same protocol to ensure fair comparison.
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Figure 3: Results of ablation studies regarding
(a) feature processing, (b) routing mechanism, (c)
training & integration, and (d) expert granularity.

Figure 3 presents our ablation results. First, the
type-1 MoE component for vector feature processing
demonstrates the highest importance, with its removal
causing a substantial performance drop. This shows
the necessity of dedicated equivariant feature han-
dling. Similarly, the topological aggregator proves
crucial, confirming that molecular topology provides
essential information for conformer ensemble rep-
resentations. Third, the router mechanisms, both
Gumbel sampling and nonlinear activation, signifi-
cantly influence model performance, indicating that
sophisticated expert selection mechanisms are funda-
mental for effective specialization. Lastly, the gated
aggregation component validates the selective cross-
conformer integration, while the relatively smaller
impact of atom-wise routing and layer-wise MoE
suggests some implementation flexibility in these ar-
chitectural aspects.

4.5 Additional Experiments

We conducted several extra experiments to further validate our approach. Ablation studies on MoE
positioning and router z-loss regularization support our architectural choices. The experiments
show that conformer-wise routing with layer-wise MoE placement achieves optimal performance,
and moderate z-loss regularization (λ = 1e−4) effectively balances expert utilization with training
stability. Additionally, we evaluated SPiCE with invariant backbones and on the BDE dataset [51].
These additional experiments are documented in Appendices G and H.

5 Conclusions

We present SPiCE, a hierarchical framework for molecular conformer ensemble learning that com-
bines three key architectural innovations: (1) shared conformer encoding for geometry-preserving
molecular processing, (2) geometric mixture-of-experts for specialized handling of scalar and vector
features, and (3) hierarchical ensemble encoding that integrates molecular topology with selective
cross-conformer communication. SPiCE maintains essential symmetries, both in conformer permu-
tation and geometric transformations. Our comprehensive evaluation demonstrates the effectiveness
of SPiCE across diverse molecular prediction tasks.
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A Related Work

A.1 Geometric Graph Neural Networks

Message-passing neural networks have been widely adopted in modeling atomistic systems, where
nodes represent atoms and edges represent chemical bonds [62]. When incorporating 3D geometric
information, these models can be broadly categorized into invariant and equivariant architectures,
based on how they handle geometric transformations.

Invariant models satisfy the condition:

ϕ(g ·G) = ϕ(G), ∀g ∈ E(3)/SE(3),

These models transform equivariant coordinates X into invariant scalar features (type-0) that re-
main unchanged under Euclidean transformations. Common invariant features include pairwise
distances [10], triplet angles [11], torsion angles [12], etc.

Equivariant models, which satisfy:

ϕ(g ·G) = g · ϕ(G), ∀g ∈ E(3)/SE(3),

can be further divided into two subcategories. Cartesian equivariant models (e.g., EGNN [16],
PaiNN [37]) operate directly in Cartesian coordinates, processing scalar (type-0) and vector (type-1)
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features while preserving equivariance through restricted operations. In contrast, spherical equivariant
models (e.g., SEGNN [63], Equiformer [34, 64]) convert geometric information into steerable features
using spherical harmonics, process rotations through Wigner-D matrices, and combine features using
Clebsch-Gordan tensor products. This formulation naturally extends to higher-order geometric
features, making it particularly effective for capturing complex geometric patterns in molecular
structures.

Readers of interest may refer to Duval et al. [65] for a complete review of geometric graph neural
networks for 3D atomic systems. We would like to remark that our SPiCE framework is agnostic to
the choice of geometric GNN architecture, allowing practitioners to select the most suitable backbone
for their specific application while maintaining the benefits of our conformer ensemble processing
approach.

A.2 Learning over Sets

Learning permutation-invariant functions over sets is a fundamental problem in machine learning,
with approaches broadly falling into several categories: direct permutation invariance, sorting-based
methods, and approximate invariance.

Direct permutation invariance. Deep Sets [33] introduced a simple yet powerful architecture where
a permutation-sensitive network processes each element independently, followed by a permutation-
invariant aggregation operation. Set Transformers [66] extend this using attention mechanisms for
more expressive set processing. DSSNet [32] generalizes this framework to handle symmetries beyond
permutation invariance. They show that when working with symmetries that combine permutations
with element-wise transformations, the processing can be decomposed into two parts: one that
handles individual elements and another that processes information aggregated across the entire set.
This framework naturally fits our molecular setting, where we need to maintain both the permutation
invariance of conformer ensembles and the geometric symmetries of individual conformers. More
sophisticated approaches like Janossy pooling [67] capture higher-order interactions by processing
subsets of elements together. Self-attention mechanisms [59] offer another perspective, effectively
comparing pairs of elements through learned relationships between queries and keys.

Sorting-based methods. Another strategy achieves permutation invariance by first arranging elements
into a canonical order. Recent advances include methods for learning the sorting function itself [68]
and approaches that sort based on learned features [69]. While these methods are computationally
efficient, they face challenges in training due to the discrete nature of sorting operations.

Approximate invariance. Some methods trade exact invariance for computational efficiency. These
include stochastic approaches that sample random permutations [67] and adversarial training tech-
niques that encourage approximate invariance [70].

Our work, while informed by these approaches, focuses on maintaining exact invariance through the
principled decomposition provided by DSSNet [32]. We propose a novel type-separated Mixture-
of-Experts mechanism to enable selective information processing while achieving the required
symmetry.

A.3 Mixture-of-Experts

When processing molecular conformers, certain atoms or structural features may be more relevant
than others for specific properties. Graph pooling approaches like SAGPool achieve this selective
processing by focusing computation on important nodes through attention mechanisms. This naturally
extends to Mixture-of-Experts (MoE) architectures that employ multiple specialized neural networks
with a learned routing mechanism.

The concept of MoE originated from adaptive mixtures of local experts [41], where separate networks
handle different subsets of training cases. Recent developments have transformed MoEs from
standalone models to components within deeper architectures [71], enabling selective computation
at various scales. Modern MoE architectures have demonstrated remarkable success in large-scale
models [43, 44, 46, 48, 72], achieving improved data efficiency and computational performance
through sparse activation patterns.
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Key design considerations of MoE include balanced expert utilization through load balancing, router
design, sparse gating for computational efficiency, and appropriate capacity factors. Router z-
loss [46] penalizes extreme routing decisions to prevent expert collapse and improve training stability.
Expert capacity factors control the maximum number of tokens per expert, balancing computational
efficiency with model performance [73]. While traditional MoEs use token-to-expert routing, Expert
Choice routing [74] reverses this by allowing experts to select tokens, improving load balancing and
computational efficiency. Recent innovations include parameter-efficient MoE variants [75], and
Soft MoE [76], which replaces discrete expert assignment with differentiable soft routing to address
training instability and scaling limitations. These developments collectively enable more efficient
and stable MoE architectures while preserving the benefits of specialized computation.

This MoE approach is suitable for conformer ensemble modeling as experts can specialize in different
geometric patterns or conformational states. We further leverage a gated aggregation mechanism
which can adaptively weigh the importance of different conformers based on both local geometric
features and global molecular context.

B PyTorch-like Pseudocode

A PyTorch-like pseudocode is given in Algorithm S1.

C Theoretical Details

C.1 Sn–equivariant Linear Layer Structure

Theorem 1. Consider Sn–equivariant linear layer L that also respects G–symmetry.

1. If L takes as input G–equivariant features Rn×3×d, then L(X)i = L0(xi) operates on each
conformer i separately;

2. If L takes as input G–invariant features Rn×1×d, then L can be decomposed as L(X)i =
L1(xi) + L2

(∑n
j=1 xj

)
, i.e. a local interaction module and a global aggregation module.

Proof of Theorem 1. For the first claim, we begin by noting that any linear function of equivariant
features, if it respects G–symmetry, must be a G–equivariant linear function, hence the output L(X)
is also G–equivariant, and operates on the 3 coordinate channels of the second dimension of L
simultaneously. Next we decompose L into separate components from each individual conformer:

L(X)i =

n∑
j=1

Li,j(xj), (S1)

where each Li,j must be a G–equivariant function. Consider the transformation g = (g1, · · · , gn) ∈
Gn on input X: g ◦X =

[
g1 ◦x1, · · · , gn ◦xn

]
, where g1, · · · , gn are independent transformations

in G. From the Gn–equivariance constraint, we have for any g ∈ Gn that

L(g ◦X) = g ◦ L(X) ⇔
n∑

j=1

Li,j(gj ◦ xj) = gi ◦
n∑

j=1

Li,j(xj),∀i

By fixing gi and varying gj for all j ̸= i, we see the right hand side remains constant, while each
Li,j(gj ◦ xj) = gj ◦ Li,j(xj) on the left hand side individually changes with different gj’s. Thus
the equation can only hold for any g if Li,j(xj) = 0 for any i ̸= j, i.e. there are no cross-conformer
interactions, and consequently (S1) becomes

L(X)i = Li,i(xi).

From here we finally consider Sn–equivariance: for a permutation p ∈ Sn, defined by p : [xi]
n
i=1 7→

[xp(i)]
n
i=1, we have

p ◦ L(X) = L(p ◦X) ⇔ Lp(i),p(i)(xp(i)) = Li,i(xp(i)),∀i,

which suggests by the arbitrariness of p that Li,i = Lj,j ,∀i, j. Writing L0 = Li,i finishes the proof.
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Algorithm S1 Pseudocode of SPiCE in a PyTorch-like style.

1 # Inputs:
2 # batch = [z, c, atom_idx]
3 # z : (Nx1) atomic numbers for all M conformers
4 # c : (Nx3) atomic coordinates for all M conformers
5 # atom_idx : (Nx1) index mapping each atom to its molecule ID
6 # conf_idx : (Nx1) index mapping each atom to its conformer ID
7

8 # --- 1) Preprocess ---
9 # build scalar & vector features and auxiliary graph attributes

10 x_s, x_v, 3d_aux = 3d_gnn.preprocess(batch)
11 _, 2d_aux = GIN.preprocess(batch)
12

13 # --- 2) Interaction block ---
14 for i in range(num_blocks):
15 # type-0 feature x_s: Nx1xC
16 # type-1 feature x_v: Nx3xC
17 h_s, h_v, 3d_aux = 3d_gnn[i].forward(x_s, x_v, 3d_aux)
18

19 # normalized type-0 feature h_s: Nx1xC
20 # normalized type-1 feature h_v: Nx3xC
21 h_s = ELN_s[i](x_s + h_s)
22 h_v = ELN_v[i](x_v + h_v)
23

24 # GMoE block, Eqn. (2)-(8)
25 # moe_x: Nx1xC, moe_v: Nx3xC
26 # router scores: Nx(N_I+N_E)
27 moe_x, moe_v, scores = gmoe_block[i](h_s, h_v)
28

29 # conformer set information sharing
30 # h_bar, h_bar_s: MxC
31 h_bar = scatter(moe_x, conf_idx, dim=0, reduce='mean')
32 h_bar_s = GIN[i](h_bar, 2d_aux)
33

34 # gated aggregation, Eqn. (10)-(11)
35 # rev_idx: mapping from conformer-level back to atom ordering
36 x_g = gated_aggr[i](h_s, h_bar_s[rev_idx])
37 x_g = x_g.unsqueeze(1) # x_g: Nx1xC
38

39 # feature update
40 x_s = x_f
41 x_v = moe_v
42

43 # --- 3) Postprocess ---
44 # convert final node-level features to molecule-level outputs
45 out = 3DGNN.postprocess(x_s, x_v, 3d_aux, atom_idx)
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For the second claim, clearly the output of any G–invariant function is also G–invariant, and cannot
contain any type-1 features. We similarly decompose L(X) as

L(X)i =

n∑
j=1

Li,j(xj), (S2)

where each Li,j is an G–invariant linear function. Consider p ∈ Sn again, we have

p ◦ L(X) = L(p ◦X) ⇔ L(X)p(i) = L(p ◦X)i,∀i

⇔
n∑

j=1

Lp(i),j(xj) =

n∑
j=1

Li,j(xp(j)),∀i

⇔
n∑

j=1

Lp(i),j(xj) =

n∑
k=1

Li,p−1(k)(xk),∀i

⇔
n∑

j=1

[
Lp(i),j(xj)− Li,p−1(j)(xj)

]
= 0,∀i,

where in the third equivalence we used k = p(j) to rewrite the summation. From the independent
variabilities of xi, each member of the above summation must take value 0, in other words

Lp(i),j = Li,p−1(j),∀i, j, p,

which is equivalent to

Lp(i),p(k) = Li,k,∀i, k, p,

via substitution of k = p−1(j). This means:

• Li,i = Lj,j = Le,∀i, j;

• Li1,j1 = Li2,j2 = Ln,∀i1 ̸= j1, i2 ̸= j2;

and therefore (S2) becomes

L(X)i = Le(xi) +
∑
j ̸=i

Ln(xj)

= (Le − Ln)(xi) + Ln

( n∑
j=1

xj

)
,

where in the second equality we used the fact that the summation of a shared linear mapping
of components is equal to the same linear mapping of the summation of components. Taking
L1 = Le − Ln and L2 = Ln finishes the proof.

C.2 Sn–equivariance of Cross-Attention Output Xs

Here we elaborate on the symmetry preservation of the gated aggregation operation discussed in
Section 3.2.4, and prove the Sn–equivariance of the attention output. Looking at (10) and (11), notice
the input Hs is Sn–equivariant while Hs is Sn–invariant, therefore for a permutation p ∈ Sn,

Attn(p ◦ Hs, p ◦ Hs) = Attn(p ◦ Hs,Hs) = softmax

(
(p ◦ HsWQ)(HsWK)T√

dk

)
HsWV

= p ◦ softmax

(
(HsWQ)(HsWK)T√

dk

)
HsWV = p ◦Attn(Hs,Hs), (S3)

where the third equality holds since individual operations on each conformer preserves permutation
equivariance. This proves the overall Sn–equivariance of the attention module.
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Table S1: Hyperparameters for each backbone model on dataset Drugs-7.5K and Kraken.

Dataset Backbone Epochs Batch LR Patience Experts Act. Experts Upcycle τ β

Drugs-7.5K

PaiNN 2000 32 2e-4 400 8 2 100 0.1 1e-3
ViSNet 2000 32 1.5e-4 600 8 4 50 0.1 1e-3
ClofNet 2000 32 1.5e-4 400 8 4 50 0.1 1e-3
Equiformer 2000 32 2e-4 400 8 4 50 0.1 1e-3

Kraken

PaiNN 2000 16 3e-4 400 16 2 50 0.1 1e-4
ViSNet 2000 32 4e-4 400 16 4 100 1.0 0.1
ClofNet 2000 16 1e-4 400 8 2 100 1.5 1e-3
Equiformer 2000 8 3e-4 400 16 2 50 1.0 1e-4

D Details of Experimental Settings

Different backbones have varying architecture complexities and capacities to learn molecular repre-
sentations. Datasets also differ in size and complexity of the prediction task. Hyperparameter tuning
for each backbone-dataset pair ensures optimal performance by balancing model capacity, data size,
and task difficulty. For example, larger datasets like Kraken may require more experts and epochs
to sufficiently learn, while simpler backbones like ClofNet need fewer epochs on Drugs-7.5K. The
hyperparameters include number of experts, number of activated experts, Gumbel-Softmax sampling
temperature, auxiliary z-loss weight, and upcycling epochs.

For regression tasks, each backbone model with a different aggregation strategy is trained with the
same set of hyperparameters, optimized through 20 iterations of Bayesian Optimization. Specific
settings are summarized in Table S1 for regression datasets. For classification tasks, all experiments
use the same settings as PaiNN on Drugs-7.5K, as classification is less sensitive to hyperparameters
than regression and Drugs-7.5K is a reliable molecular property prediction benchmark.

E Details of Datasets

We evaluate our method on four diverse molecular datasets. Their statistics is summarized in Table S2.

Drugs-7.5K. A subset of 7,500 molecules downsampled from GEOM-Drugs dataset, with three
quantum mechanical properties:

• Ionization Potential (IP): The energy required to remove an electron from a neutral molecule
(IP = Ecation − Eneutral).

• Electron Affinity (EA): The energy change when adding an electron (EA = Eneutral − Eanion).

• Electronegativity (χ): Measuring electron attraction tendency (χ = −∂E/∂N ).

Kraken. A dataset of 1,552 monodentate organophosphorus(III) ligands with DFT-computed
conformer ensembles. We focus on four 3D steric descriptors (measured in Å): Sterimol B5, Sterimol
L, buried Sterimol B5, and buried Sterimol L, which are crucial for QSAR modeling in catalyst
design.

CoV2 and CoV2-3CL. Two highly imbalanced classification datasets derived from GEOM-Drugs,
containing experimental data for SARS-CoV-2 inhibition:

• CoV2-3CL: Tests specific inhibition of the SARS-CoV-2 3CL protease.

• CoV2: Evaluates general SARS-CoV-2 inhibition in human cell assays.

The class imbalance is summarized in Table S2b, where positive samples (hits) represent only a small
fraction of the total molecules.
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Table S2: Dataset statistics for all four datasets and dataset splits for COVID-related datasets.

Dataset #Molecules #Conformers #Heavy atoms #Rot. bonds

Drugs-7.5K 7,509 54,202 30.67 7.45

Kraken 1,552 21,287 23.70 9.05

CoV2 5,466 72,744 24.57 4.83

CoV2-3CL 755 7,742 14.51 2.41

(a) Molecular composition statistics. Numbers of heavy atoms and
rotatable bonds (“rot. bonds”) are averaged per molecule.

Split CoV2-3CL CoV2

Train 50 (485) 53 (3,294)

Validation 15 (157) 17 (1,096)

Test 11 (162) 22 (1,086)

Total 76 (804) 92 (5,476)

(b) Dataset partitioning showing
number of active compounds (to-
tal compounds in parentheses)

F Details of Baselines

We evaluate SPiCE against two categories of baselines: ensemble learning methods with explicit set
encoders and specialized conformer ensemble models.

Ensemble learning with set encoders. We implement our framework with four representative
3D backbones that guarantee E(3) or SE(3) equivariance: PaiNN [37], ViSNet [58], ClofNet [13],
and Equiformer [34]. For each backbone, we compare GAIN against three conformer aggregation
strategies following Zhu et al. [51]:

• Mean pooling: The simplest approach that computes the average of conformer embeddings {hi}ni=1
generated by 3D GNNs:

hMEAN =
1

n

n∑
i=1

hi. (S4)

• DeepSets [33]: A permutation-invariant function that processes the ensemble through a Multi-Layer
Perceptron (MLP) ϕ, followed by sum pooling and another MLP ρ:

hDS = MLPρ

(
n∑

i=1

MLPϕ(hi)

)
, (S5)

where MLPϕ transforms individual embeddings and MLPρ processes the aggregated features.
This approach preserves more individual conformer information than mean pooling at the cost of
additional non-linear transformations.

• Self-attention [59]: Computes a weighted sum of embeddings using attention scores:

hATTN =

n∑
i=1

αihi, (S6)

αi = softmax(hT
i Whi). (S7)

This approach captures pairwise interactions between conformers through learned attention weights.

After obtaining the ensemble embeddings through these set encoders, a linear projection head
generates the final predictions.

Specialized conformer ensemble models. We also compare against two state-of-the-art models
specifically designed for conformer ensemble learning:

• ConfNet [60]: Extends DSSNet [32] as an explicit set encoder, applying permutation-invariant
operations directly to the conformer ensemble while maintaining geometric equivariance.

• ConAN-FGW [31]: Introduces a novel 2D–3D aggregation mechanism based on the Fused Gromov-
Wasserstein Barycenter problem. It combines this with efficient conformer generation using
distance geometry through RDKit, enabling joint optimization of conformer generation and property
prediction.
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Figure S1: Impact of upcycling epochs on model performance. (a) Validation loss curves for different
upcycling epochs on the Drugs-7.5K dataset using ViSNet backbone for EA prediction. (b) MSE
comparison of validation errors.
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Figure S2: Analysis of expert combinations on model performance. Results show how varying the
number of total experts (8–32) and active experts (2–8) affects prediction accuracy on the Drugs-7.5K
dataset using PaiNN backbone for EA prediction.

G Detailed Ablation Studies

To better understand the key design choices in SPiCE, we conduct comprehensive ablation studies
examining four critical aspects: (1) the effectiveness of sparse upcycling for stabilizing early-stage
training, (2) the impact of expert granularity on model performance, (3) the optimal positioning
of TS-MoE within the architecture, and (4) the influence of router z-loss on training stability and
expert utilization. Here we present analyses of the first two aspects, while full results for the rest are
provided in Appendix G.

Sparse upcycling. Training both GNN representation and MoE components simultaneously can
be challenging in early stages. The sparse upcycling strategy [49] addresses this by separating the
training into two phases: first training a single expert to optimize representation learning, then cloning
it into multiple experts with a newly initialized router for specialization.

As shown in Figure S1, we evaluate different upcycling epochs (0, 50, 100) on the Drugs-7.5K dataset
using ViSNet for EA prediction. Results indicate that 50 upcycling epochs yield optimal performance,
while excessive upcycling epochs can slow convergence. This confirms that appropriate upcycling
improves both convergence speed and final accuracy.

Expert granularity. While finer expert granularity can increase model flexibility through more
possible combinations (e.g.,

(
8
2

)
= 28 vs.

(
16
4

)
= 1820) [73], it also introduces computational

overhead and potential training instability. Figure S2 presents a systematic study varying the
number of total experts (8, 16, 32) and activated experts (2, 4, 8) on the Drugs-7.5K dataset with
PaiNN backbone. The results reveal a U-shaped performance curve, with optimal performance at(
16
4

)
= 1820 combinations. This suggests a sweet spot balancing model flexibility with computational

efficiency for molecular conformer ensemble representation.

MoE positioning. Table S3a compares different MoE configurations on the Kraken dataset’s
BurB5 target using PaiNN. Our experiments examine three key design choices: conformer-wise vs.
atom-wise routing, layer-wise MoE placement, and non-linear router activation. Results show that
conformer-wise routing with layer-wise MoE and softmax activation achieves the best performance,
supporting our design choice of treating conformers rather than atoms as routing objectives.
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Table S3: Ablation studies on (a) different architectural choices, (b) router z-loss weight (λ). Results
show validation MAE on Kraken (BurB5) and Drugs-7.5K (EA) datasets using PaiNN and ViSNet
respectively.

Atom-Wise
Routing

Layer-Wise
MoE

Router
Activation MAE

✗ ✓ ✓ 0.1645
✓ ✗ ✓ 0.1515
✓ ✓ ✗ 0.1546
✓ ✓ ✓ 0.1470

(a) Impact of architectural choices

λ MAE

1e−6 0.4973

1e−5 0.4960

1e−4 0.4888
1e−3 0.4985

(b) Z-loss λ

Router z-loss. Router z-loss penalizes extreme routing decisions and helps balance expert utilization.
Table S3b shows the impact of different z-loss weights (λ) on validation error using the ViSNet
backbone on Drugs-75K. A moderate weight of 1e−4 achieves optimal performance, suggesting
that proper regularization improves model stability without overly constraining expert specialization.
Larger weights, while promoting more balanced expert utilization, can lead to training instability due
to excessive penalization.

H Additional Experiments

BDE dataset. To showcase our method is effective and scalable to reaction-based prediction
task, we conducted experiments on the BDE dataset [77]. The BDE dataset comprises 5,915
organometallic catalysts (ML1L2) with diverse ligands and metal centers, including DFT-computed
binding energies for conformer ensembles of unbound and bound states. Conformers are generated
via Open Babel [78] and force field optimizations, approximating global minima. Due to the high cost
of DFT optimization, precise conformer ensembles are generally unknown at inference, making this
a realistic and challenging benchmark. The goal is to predict binding energies from either individual
or ensemble conformers of the catalyst in both states.

Different from the experimental settings in the main paper, this task involves two distinct sets of
conformers as input, corresponding to the unbound and bound states of the catalyst. To accommodate
this, we employ two parameter-independent copies of SPiCE, with their regression heads removed, to
separately process each conformer set. The resulting molecular-level features are then concatenated
and passed through a regression head to predict the final binding energy. Table S4a presents the
performance of SPiCE on this dataset in comparison with the two other ensemble models Mean and
DeepSets with PaiNN [37] and Equiformer [34] as backbones. It is seen that SPiCE consistently
outperforms the baselines, demonstrating its effectiveness in reaction-based prediction tasks.

Invariant Type-0-only model. Our SPiCE framework is designed as a plug-and-play architecture
that can be adapted to work with different geometric neural network backbones. While our method

Table S4: Additional experiments on the BDE dataset and invariant models. Bold values indicate
best performance.

Backbone Model Binding Energy

PaiNN
[37]

Mean 1.8744
DeepSets 1.9164
SPiCE 1.8528

Equiformer
[34]

Mean 1.9136
DeepSets 1.9540
SPiCE 1.8978

(a) Reaction-based regression task (BDE) in MAE (↓).

Model B5 L

Mean 0.3172 0.4258

DeepSets 0.2627 0.3777

SPiCE
(Invariant) 0.2446 0.3379

(b) Invariant type-0-only model on Kraken dataset
with DimeNet++ [79] as backbone.
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can accommodate both invariant and equivariant backbones, we primarily focus on equivariant 3D
GNNs (PaiNN, ClofNet, Equiformer, and VisNet) due to their superior representational capabilities.
Equivariant features have been shown to provide steeper learning curves, improved data efficiency,
and finer angular resolution for capturing molecular structural details [15, 80, 81].

To demonstrate the versatility of SPiCE and address potential questions about backbone compat-
ibility, we developed a simplified variant that operates exclusively on invariant (type-0) features,
compatible with invariant-only backbones such as DimeNet++ [79]. This adaptation removes the
type-1 processing branch including vector features, type-1 router, and the corresponding expert
network to accommodate scalar-only representations.

We evaluate this invariant variant on the Kraken dataset against strong baselines including DeepSets
and mean pooling (results in Table S4b). We note that this experiment is not intended as a direct
comparison between invariant and equivariant approaches. Rather, it validates the effectiveness of our
design in a constrained setting and confirms the adaptability of our model across different architectural
paradigms. Even without equivariant information, our adapted framework can outperform the
invariant baselines, demonstrating that the core design remains beneficial across different geometric
representations.

I Code and Dataset Availability

The implementation of this work can be found in this repository: https://github.com/DannieS
YD/SPiCE.

J Limitations and Future Work

While SPiCE achieves strong performance across a variety of molecular property prediction tasks,
the hierarchical architecture and dependence on equivariant GNN backbones introduce additional
computational overhead compared to simpler pooling methods, potentially limiting scalability in
resource-constrained environments or applications requiring real-time inference. Furthermore, al-
though SPiCE facilitates cross-conformer interactions through attention-based integration, the
framework does not explicitly incorporate thermodynamic priors or statistical mechanical principles
that govern conformational ensembles.

Future work could address these limitations through several directions: developing more efficient at-
tention mechanisms or approximation strategies to reduce computational cost, incorporating physical
distribution information, and exploring hybrid approaches that balance computational efficiency with
physical grounding.

K Raw Performance Data

The raw performance data with standard deviation of Table 1 is summarized in Table S5.
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Table S5: Raw performance (mean ± standard deviation) in terms of MAE (↓) for seven regression tasks (Drugs-7.5K, Kraken) and ROC scores (↑) for two
classification tasks (CoV2, CoV2-3CL).

Backbone Ensemble
Strategy

Drugs-7.5K (MAE, ↓) Kraken (MAE, ↓) CoV2 3CL
IP EA χ B5 L BurB5 BurL ROC (↑) ROC (↑)

PaiNN
[37]

Mean 0.5410±0.0462 0.4966±0.0336 0.2963±0.0190 0.2877±0.0252 0.3950±0.0233 0.1817±0.0091 0.1472±0.0039 0.5722±0.0518 0.8850±0.1209

DeepSets 0.5396±0.0534 0.5091±0.0129 0.2982±0.0052 0.2225±0.0218 0.3619±0.0192 0.1693±0.0111 0.1324±0.0091 0.5802±0.0356 0.6808±0.1239

Attention 0.6318±0.0327 0.5985±0.0160 0.3488±0.0126 0.3496±0.0140 0.4109±0.0167 0.2123±0.0005 0.1506±0.0029 0.4179±0.0357 0.6984±0.1994

SPiCE 0.5281±0.0666 0.4929±0.0331 0.2792±0.0030 0.2178±0.0376 0.3548±0.0199 0.1564±0.0154 0.1292±0.0031 0.5910±0.0831 0.8880±0.2113

ClofNet
[13]

Mean 0.5935±0.0672 0.5441±0.0072 0.3121±0.0266 0.3986±0.0211 0.5674±0.0423 0.2857±0.0332 0.2327±0.0176 0.3900±0.0042 0.7580±0.1898

DeepSets 0.5912±0.0447 0.5533±0.0292 0.3153±0.0174 0.3314±0.0187 0.5375±0.0154 0.2532±0.0043 0.1983±0.0008 0.6208±0.0354 0.7628±0.0184

Attention 0.6694±0.0264 0.5949±0.0352 0.3578±0.0096 0.4979±0.0199 0.6118±0.0328 0.3353±0.0109 0.2502±0.0099 0.3707±0.0149 0.8182±0.1042

SPiCE 0.5747±0.0362 0.5283±0.0186 0.3059±0.0035 0.3193±0.0234 0.4903±0.0311 0.2477±0.0113 0.1913±0.0098 0.6730±0.0347 1.0000±0.0972

Equiformer
[34]

Mean 0.5457±0.0349 0.4932±0.0125 0.2977±0.0160 0.2303±0.0059 0.3830±0.0291 0.1680±0.0004 0.1259±0.0011 0.5601±0.0351 0.8387±0.0982

DeepSets 0.5404±0.0247 0.4888±0.0154 0.2990±0.0016 0.2564±0.0159 0.3772±0.0008 0.1782±0.0120 0.1234±0.0023 0.5125±0.0346 0.7134±0.0194

Attention 0.5488±0.0205 0.4923±0.0371 0.2896±0.0247 0.3187±0.0074 0.4508±0.0352 0.1673±0.0058 0.1425±0.0195 0.3882±0.0377 0.7881±0.0614

SPiCE 0.5318±0.0254 0.4830±0.0453 0.2816±0.0332 0.2241±0.0102 0.3456±0.0291 0.1611±0.0004 0.1229±0.0021 0.5650±0.0457 0.8405±0.0823

ViSNet
[58]

Mean 0.5593±0.0392 0.4927±0.0451 0.2862±0.0347 0.2811±0.0163 0.3970±0.0461 0.1874±0.0036 0.1469±0.0022 0.6035±0.0623 0.7447±0.0376

DeepSets 0.5280±0.0449 0.4987±0.0515 0.2846±0.0248 0.3104±0.0247 0.4113±0.0222 0.1716±0.0116 0.1314±0.0242 0.6626±0.0036 0.4160±0.0425

Attention 0.5593±0.0455 0.4988±0.0355 0.2944±0.0108 0.3755±0.0129 0.4195±0.0336 0.2384±0.0172 0.1394±0.0044 0.5262±0.0472 0.7158±0.1312

SPiCE 0.5384±0.0298 0.4538±0.0491 0.2814±0.0155 0.2715±0.0130 0.3807±0.0399 0.1657±0.0120 0.1277±0.0077 0.6890±0.0629 0.7195±0.0837
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Our main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in the Appendix.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We provide proof based on lemmas listed in Section 2.2.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the full experiments setting only relying on open-source data and models
in the Appendix.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide detailed experiment details in Section 4.1 and Appendix.

Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/g
uides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/publ
ic/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide detailed experiment details in Section 4.1 and Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: In Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss the impacts in the Appendix.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: [NA]

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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