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Session-based Recommendation
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Previously visited items Item to be recommended

• No profile about the actual user.

• Only timestamp and (possibly limited) clicked items available.



Graph-based Recommender Models

• Limitation of previous sequential methods:
• Sequence-based methods only model sequential transitions between 

consecutive items, with complex transitions neglected.
• Suppose a session is                                          . It is hard to capture such 

a to-and-fro relationship between item      and items             .
• SR-GNN [Wu et al. 2019] proposes to model sessions as graphs.

• Discover the complex transitional patterns underneath sessions 
through session graphs.

• This natural means of encoding rich temporal patterns within sessions 
produces more accurate representations for items.
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[Wu et al. 2019] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, Session-based Recommendation with Graph Neural Networks, in 
AAAI, 2019, pp. 346–353.



Representing Diverse User Interests

• Representing one session using one fixed embedding vector 
cannot express users’ diverse interests, considering abundant 
candidate items and user behaviors.

• The interests of a user with rich behaviors can be specifically 
activated given a target item [Zhou et al. 2018].
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[Zhou et al. 2018] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai, Deep Interest Network for Click-
Through Rate Prediction, in KDD, 2018, pp. 1059—1068.

Historical behaviors Item to be recommended
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Model: Target Attentive GNN
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• Each session sequence is modeled as a directed graph.
• Edge weight normalization: the occurrence of the edge divided by the 

outdegree of that edge’s start node.
• Treat incoming and outgoing edges separately to reflect bidirectional 

relationships.

Graph Modeling
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Learning Item Embeddings

• We use Gated GNNs [Li et al. 2016] to learn item representations 
for all nodes in session graphs.

• The GGNN model aggregates features from neighboring nodes and 
adopts memory units to better preserve useful information.
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Constructing Target-Aware Embeddings

• We introduce a novel target attention mechanism to calculate 
soft attention scores over all items with respect to each target 
item to adaptively capture relevant historical behaviors.

• The obtained target embedding for representing users’ interests 
varies with different target items.
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Generating Session Embeddings

• We represent a session by node embeddings involved in that 
session, along with the user’s target embedding.

• Local embedding (short-term preference)

• Global embedding (long-term preference)

• Final representation
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Making Recommendation

• We compute the recommendation score for each item by taking 
inner-product of item embeddings and session embeddings.

• For training the model, we define the loss function as the cross-
entropy of the prediction and the ground truth.
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Experiment Setup
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• Dataset statistics



Experiment Setup (cont.)
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• Baselines
• Frequency-based POP and S-POP
• Similarity-based Item-KNN [Sarwar et al. 2001]
• Bayesian personalized ranking (BPR-MF) [Rendle et al. 2009]
• Factorizing personalized Markov chain model (FPMC) [Rendle et al. 2010]
• RNN-based GRU4REC [Hidasi et al. 2016]
• Neural attentive recommender model (NARM) [Li et al. 2017]
• Short-term attention/memory priority model (STAMP) [Liu et al. 2018]
• Graph-based SR-GNN [Wu et al. 2019]



Comparison with Baselines
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Ablation Studies

• Model variants to analyze how different representations for 

user preference affect performance:

• (a) local embedding only (TAGNN-L)

• (b) global embedding using average pooling only (TAGNN-Avg)

• (c) attentive global embedding (TAGNN-Att)

• (d) local embedding plus attentive global embedding (TAGNN-L+Att)
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Ablation Studies (cont.)
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Wrapping Up

1. Session-based recommendation is indispensable where 
users’ preference and historical records are hard to obtain.

2. We have developed a novel target attentive graph neural 
network model for session-based recommendation.

3. By incorporating graph modeling and a target-aware attention 
module, the proposed TAGNN jointly considers user interests 
given a certain target item as well as complex item transitions 
in sessions.

4. Extensive experiments on real-world benchmark datasets 
demonstrate the effectiveness of our model.
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