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Abstract—Multimedia contents are of predominance in the modern Web era. Recent years have witnessed growing research interests in
multimedia recommendation, which aims to predict whether a user will interact with an item with multimodal contents. Most previous
studies focus on modeling user-item interactions with multimodal features included as side information. However, this scheme is not
well-designed for multimedia recommendation. Firstly, only collaborative item-item relationships are implicitly modeled through high-order
item-user-item co-occurrences. Considering that items are associated with rich contents in multiple modalities, we argue that the latent
semantic item-item structures underlying these multimodal contents could be beneficial for learning better item representations and assist
the recommender models to comprehensively discover candidate items. Secondly, although previous studies consider multiple modalities,
their ways of fusing multiple modalities by linear combination or concatenation is insufficient to fully capture content information of items
and item relationships. To address these deficiencies, we propose a latent structure MIning with ContRastive mOdality fusion model,
which we term MICRO for brevity. To be specific, we devise a novel modality-aware structure learning module, which learns item-item
relationships for each modality. Based on the learned modality-aware latent item relationships, we perform graph convolutions to explicitly
inject item affinities into modality-aware item representations. Additionally, we design a novel multimodal contrastive framework to
facilitate item-level multimodal fusion by mining both modality-shared and modality-specific information. Finally, the item representations
are plugged into existing collaborative filtering methods to make accurate recommendation. Extensive experiments on three real-world
datasets demonstrate the superiority of our method over state-of-arts and rationalize the design choice of our work.

Index Terms—Multimedia Recommendation, Graph Structure Learning, Contrastive Learning.

✦

1 INTRODUCTION

W ITH the rapid development of Internet, information
overload has become an increasingly crucial challenge.

Nowadays, users are easily accessible to large amounts
of online information represented in multiple modalities,
including images, texts, videos, etc. For example, visual
appearances and textual descriptions play important roles
for selecting products online; visual covers and textual tags
allow users to find interesting items from a large amount
of instant videos. Therefore, multimedia recommendation,
which aims to predict whether a user will interact with an
item with multimodal contents, has attracted a lot of research
interests and has been successfully applied to many online
applications, such as e-commerce, instant video platforms,
and social media platforms.

Collaborative Filtering (CF), as one of the most prevalent
techniques in personalized recommendation, has been widely
studied previously. Focusing on exploiting abundant user-
item interactions, CF methods group users according to their
historical interactions, by encoding users and items into low-
dimensional dense vectors and making recommendation
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Fig. 1. A toy example of recommendation with two types of item relations.
In this paper, we argue that semantic structures mined from multimodal
features are helpful for comprehensively discovering candidate items
supplementary to collaborative signals in traditional work.

based on these embeddings [1–3]. Following traditional CF
frameworks, early work on multimedia recommendation
like VBPR [4], DeepStyle [5], and ACF [6] incorporates
multimodal features as side information in addition to the
learned dense vectors of items, so as to group users based
on both historical interactions and item contents. Park et al.
[7] propose to explicitly capture the information hidden in
also-viewed products, i.e., a list of products that have also
been viewed by users who have viewed a target product.
The also-viewed relationship can be regarded as a special
kind of co-interacted relationship. Lee and Abu-El-Haija [8]
propose to minimize the similarity of the content vectors
of co-watched items, which exploits co-interacted item-item
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relationships through item-user-item occurrences.
Inspired by the recent surge of graph neural networks [9,

10], Wang et al. [11] propose to model user-item relationships
as bipartite graphs. The first-order connectivities in user-
item graphs indicate the interaction history. The second-
order connectivities reveal collaborative relations that similar
users (or items) who have co-interacted with the same items
(or users). These graph-based recommender systems [11–
13] inject high-order connectivities into the embeddings to
learn better representations. Recently, many attempts have
been made to integrate multimodal contents into graph-
based recommendation systems. MMGCN [14] constructs
modality-specific user-item interaction graphs to model user
preferences specific to each modality. Following MMGCN,
GRCN [15] utilizes multimodal features to refine user-item
interaction graphs by identifying false-positive feedbacks
and pruning the corresponding noisy edges. HUIGN [16]
constructs a co-interacted item graph, where the edge
corresponds to the item pair consumed by the same users.
By conducting hierarchical GNNs on the co-interacted item
graph, HUIGN can mine users’ intents at different levels.

Despite their effectiveness, previous attempts suffer from
two limitations. Firstly, existing work fails to comprehen-
sively model item-item relationships, which have been
proved to be important in recommender systems [17]. Specif-
ically, only collaborative relations are considered through
high-order item-user-item co-occurrences [7, 8, 16]. However,
semantic relations which reflect the content of items, are not
explicitly modeled. Taking Figure 1 as an example, existing
methods will recommend the shirt ( ) for u2 according to
collaborative relations, since shirts ( ), hats ( ), and pants
( ) all interacted with u1. However, previous work may not
be able to recommend coats ( ) to u2, which are semantically
(visually in this example) similar to shirts. Considering that
items are associated with rich multimodal content features in
multimedia recommendation, there exist a wealth of semantic
relations underlying multimodal contents, which would
assist the recommender models to comprehensively discover
candidate items.

Secondly, most previous attempts disregard the item-level
multimodal fusion. Early work [4, 5, 18] only focuses on uni-
modal information; other work on multimedia recommen-
dation [14, 15] conducts multimodal fusion by simple linear
combination or concatenation, the inductive bias behind
which is that all items share the same fusion mechanism
(e.g., the same combination weights). However, users usually
focus on different modalities when browsing different items.
For example, one may pay more attention to the visual
modality when selecting clothes, while focusing more on
textual information when picking books. To this end, we
conduct item-level multimodal fusion, allowing the model to
utilize the most important parts of different items in a flexible
manner and therefore learn better item representations.
Specifically, we propose to mine latent semantic item-item
relationships underlying multimodal features of items and
conduct item-level multimodal fusion based on the learned
structures.

As shown in Figure 2, the proposed MICRO consists of
four key components. Firstly, we develop a novel modality-
aware structure learning layer, which learns modality-aware
item structures from content features of each modality.

Secondly, we perform graph convolutions on the learned
modality-aware latent graphs to explicitly consider item
relationships of each modality individually. Thirdly, we
devise a novel multimodal contrastive framework to consider
both modality-shared and modality-specific information.
Finally, the resulting enhanced item representations are
infused with item relationships in multiple modalities, which
will be added into the output item embeddings of CF models
to make recommendations.

Our model enjoys two additional benefits. Firstly, MICRO
can alleviate the cold-start problem. Previous graph-based
multimedia recommendation methods face cold-start prob-
lems where long-tailed items are only interacted with few
users or even never interacted with users. Since previous
methods utilize multimodal content features based on the
user-item interaction graph, those long-tailed items will
become isolated nodes in that graph, which will reduce
the effectiveness of multimodal information. Our work, on
the contrary, can alleviate the cold-start problem in two ways:
(1) we mine latent item-item structures and the long-tailed
items will get similar user feedbacks from their learned
neighbors; (2) the multimodal contrastive framework serves
as an auxiliary training signal that helps learn better item rep-
resentations involved with relation information. The second
benefit is that, MICRO can serve as a flexible play-and-plug
module. Unlike previous attempts which utilize multimodal
features based on dedicated user-item aggregation strategies,
MICRO separates the usage of multimodal features with
the usage of user-item interactions and is thus agnostic to
downstream CF methods.

In summary, the main contribution of this work is
threefold.

• We highlight the importance of explicitly exploiting
item relationships and explicitly consider item-level
multimodal fusion in multimedia recommendation.

• We propose a novel method to mine latent item relations
and conduct item-level multimodal fusion based on the
mined structures, which consider both modality-shared
and modality-specific information.

• We perform extensive experiments on three public
datasets. Notably, our method outperforms the state-of-
the-art methods by 20% on average in terms of different
metrics, validating the effectiveness of our proposed
model.

To foster reproducible research, our code is made publicly
available at https://github.com/CRIPAC-DIG/MICRO.

2 PRELIMINARIES

In this section, we first formulate the multimedia recommen-
dation problem. Then, to motivate our model design, we
use two simple and intuitive experiments, from item and
user perspectives respectively, to show that users tend to
buy semantically similar items. That is, semantic item-item
relationships are helpful for comprehensively discovering
candidate items.

2.1 Problem Definition

Let U , I(|I| = N) denote the set of users and items,
respectively. Each user u ∈ U is associated with a set

https://github.com/CRIPAC-DIG/MICRO
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TABLE 1
Average semantic similarity of all items and co-interacted items.

Dataset Modality All Items Co-interacted Items

Clothing Visual 0.2239 0.3958
Textual 0.4206 0.5830

Sports Visual 0.2184 0.3547
Textual 0.3895 0.5423

Baby Visual 0.2240 0.3534
Textual 0.4413 0.5405

TABLE 2
The proportion (%) of users buying semantically similar items with

respect to different k.

Dataset Modality k = 5 k = 10 k = 15 k = 20

Clothing Visual 46.88 51.34 54.22 56.33
Textual 54.90 60.21 63.41 65.57

Sports Visual 42.18 45.58 47.71 49.39
Textual 53.56 58.48 61.64 63.90

Baby Visual 44.37 48.17 50.87 53.36
Textual 55.25 59.58 62.45 64.89

of items Iu with positive feedbacks which indicate the
preference score yui = 1 for i ∈ Iu. xu,xi ∈ Rd is the
input ID embedding of u and i, respectively, where d is
the embedding dimension. Besides user-item interactions,
multimodal features are offered as content information of
items. We denote the modality features of item i as emi ∈ Rdm ,
where dm denotes the dimension of the features, m ∈ M is
the modality, and M is the set of modalities. The purpose of
multimedia recommendation is to accurately predict users’
preferences by ranking items for each user according to
predicted preference scores ŷui. In this paper, we consider
visual and textual modalities denoted by M = {v, t}. Please
kindly note that our method is not fixed to the two modalities
and multiple modalities can be involved.

2.2 Pilot Studies

Firstly, from the item perspective, we conduct an experiment
to show that co-interacted items are much more semantically
similar. We compute the cosine similarity between all items
as the baseline and compute the similarity between co-
interacted items. The averages are summarized in Table 1.
We can observe that co-interacted items (items bought by the
same user) are much more similar, which demonstrates that
users tend to buy semantically similar items.

Secondly, from the user perspective, we count the propor-
tion of users buying semantically similar items. We intuitively
define i1 and i2 are semantically similar if i1 is among the
k items most similar to i2, or i2 is among the k items most
similar to i1, where a smaller k means a smaller range. Table 2
reports the proportion of users buying semantically similar
items with respect to different k. We can observe that even
with a small k, the majority of users tend to buy semantically
similar items.

3 THE PROPOSED METHOD

In this section, we introduce our model in detail. As illus-
trated in Figure 2, there are four main components in our
proposed framework: (1) a modality-aware graph structure
learning layer that learns item graph structures from content
features of each modality, (2) graph convolutional layers that
learn the modality-aware item embeddings by injecting item-
item affinities based on the learned graph structures, (3) an
contrastive multimodal fusion framework to promote item-
level multimodal fusion by considering both modality-shared
and modality-specific information, and (4) downstream CF
methods.

3.1 Modality-aware Latent Structure Mining
Multimodal features provide rich and meaningful content
information of items, while existing methods only utilize
multimodal features as side information for each item, ignor-
ing the important semantic relationships of items underlying
features. In this section, we introduce how to discover the
underlying latent graph structure of item graphs in order to
learn better item representations.

To be specific, we first construct initial k-Nearest-
Neighbor (kNN) modality-aware item graphs S̃m by uti-
lizing raw multimodal features. After that, we learn the
latent graph structures Ãm from transformed multimodal
features. Finally, we combine the learned structures with the
initial structures by a skip connection.

3.1.1 Constructing Initial Modality-aware Graphs
We first construct initial kNN modality-aware graph Sm

by using raw features for each modality m. Based on the
hypothesis that similar items are more likely to interact than
dissimilar items [19], we quantify the semantic relationship
between two items by their similarity. Common options for
node similarity measurement include cosine similarity [20],
kernel-based functions [21], and attention mechanisms [22].
Our method is agnostic to similarity measurements, and we
opt to the simple and parameter-free cosine similarity in this
paper. The similarity matrix Sm ∈ RN×N is computed by

Sm
ij =

(emi )
⊤
emj

∥emi ∥∥emj ∥
. (1)

Typically, the graph adjacency matrix is supposed to be non-
negative but Sij ranges between [−1, 1]. Thus, we suppress
its negative entries to zeros. Moreover, common graph
structures are much sparser other than a fully-connected
graph, which is computationally demanding and might
introduce noisy, unimportant edges [22]. We conduct kNN
sparsification [23] on the dense graph: for each item i, we
only keep edges with the top-k confidence scores:

Ŝm
ij =

{
Sm
ij , Sm

ij ∈ top- k(Sm
i,:),

0, otherwise,
(2)

where Sm
i,: denotes the i-row of S, and Ŝm is the resulting

sparsified, directed graph adjacency matrix. To alleviate the
exploding or vanishing gradient problem [9], we normalize
the adjacency matrix as:

S̃m = (Dm)−
1
2 Ŝm(Dm)−

1
2 , (3)
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Fig. 2. The overall framework of our proposed MICRO model. Firstly, we develop a novel modality-aware structure learning layer to mine the modality-
aware latent item-item semantic relationships from multimodal features. Secondly, we employ graph convolutions on the learned modality-aware
graphs to explicitly model item relationships of each modality individually. Thirdly, we devise a novel contrastive multimodal fusion framework to
adaptively capture item relationships shared between multiple modalities in a self-supervised manner. Finally, the resulting item representations are
infused with item relationships in multiple modalities, which will be added into the output item embeddings of CF models to make recommendation.

where Dm ∈ RN×N is the diagonal degree matrix of Ŝm

and Dm
ii =

∑
j Ŝ

m
ij .

3.1.2 Learning Latent Modality-aware Graphs
Although we have obtained the modality-aware initial graph
structures S̃m by utilizing raw multimodal features, they
may not be ideal for the recommendation task. This is
because the raw multimodal features are often noisy or
even incomplete due to the inevitably error-prone data
measurement or collection. To this end, we propose to
dynamically learn the graph structures by the transformed
multimodal features and combine the learned structures with
initial ones.

Firstly, we transform raw modality features into high-
level features ẽmi :

ẽmi = Wmemi + bm, (4)

where Wm ∈ Rd×dm and bm ∈ Rd denote the trainable
transformation matrix and the bias vector, respectively. We
dynamically infer the graph structures utilizing ẽmi , repeat
the graph learning process described in Eqs. (1, 2, 3) and
obtain the adjacency matrix Ãm.

Although the initial graph could be noisy, it still carries
rich and useful information regarding item graph structures.
Also, drastic change of adjacency matrix will lead to unstable
training. To keep rich information of initial item graph and
stabilize the training process, we add a skip connection that
combines the learned graph with the initial graph:

Am = λS̃m + (1− λ)Ãm , (5)

where λ ∈ (0, 1) is the coefficient of skip connection
that controls the amount of information from the initial
structure. The obtained Am is the final graph adjacency
matrix representing latent structures for modality m.

It is worth mentioning that both S̃m and Ãm are sparsi-
fied and normalized matrices, thus the final adjacency matrix
Am is also sparsified and normalized, which is computation-
ally efficient and stabilizes gradient backpropagation.

3.2 Item Affinity Learning with Graph Convolutions

After obtaining the modality-aware latent structures, we
perform graph convolution operations to learn better item
representations by injecting item-item affinities into the
embedding process. Graph convolutions can be treated as
message propagation and aggregation. Through propagating
the item representations from its neighbors, one item can
aggregate information within the first-order neighborhood.
Furthermore, by stacking multiple graph convolutional lay-
ers, the high-order item-item relationships can be captured.

Following Wu et al. [24] and He et al. [13], we employ
simple message propagation and aggregation without feature
transformation and non-linear activations which is effective
and computationally efficient. In the l-th layer, the message
passing and aggregation could be formulated as:

Hm
(l) = AmHm

(l−1), (6)

where Hm
(l) ∈ RN×d is the l-th layer item embedding matrix

of modality m, the i-th row of which denotes the embedding
vector of item i. For all modalities m ∈ M, we use the same
item ID embedding matrix to initialize the input embedding
matrix Hm

(0). We utilize ID embedding vector of items as
input representations rather than multimodal features, since
we employ graph convolutions to directly capture item-
item affinities and multimodal features are used to bridge
semantic relationships. After stacking L layers, Hm

(L) encodes
the high-order item-item relationships of modality m.

3.3 Multimodal Fusion with Contrastive Learning

Multiple modalities convey both complementary and sup-
plementary information [25]. To this end, we first utilize
contrastive learning to extract modality-shared representa-
tions and then deploy an orthogonality constraint to extract
modality-specific representations.
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3.3.1 Mining Modality-Shared Information
For simplicity, we omit the subscript (L) and use hm

i

hereafter to denote the i-th row of Hm
(L), which represents

the embedding of item i in modality m. The importance of
each modality corresponding to item i can be formulated as
follows:

αm
i = softmax

(
q⊤
1 tanh (Whm

i + b)
)
, (7)

where q1 ∈ Rd denotes attention vector and W ∈ Rd×d, b ∈
Rd denote the weight matrix and the bias vector, respectively.
Note that these parameters are shared for all modalities.
Then, the modality-common embedding of item i can be
represented as:

hc,i =

|M|∑
m=1

αm
i hm

i . (8)

We devise a novel self-supervised auxiliary task to adap-
tively distill the shared information from multiple modal-
ities. Existing contrastive learning frameworks [26] seek
to maximize the agreement among differently augmented
views of the same data examples, which has been proven
to be effective in multi-view representation learning [27, 28]
and multimodal tasks [29, 30]. In this work, since multiple
modality-aware graphs are involved, we propose to construct
self-supervision signals by maximizing the agreement between
item representations under individual modalities and the fused
multimodal representations. In this way, the fused multimodal
representations can adaptively capture item-item relation-
ships shared between multiple modalities in a self-supervised
manner. The resulting contrastive loss can be mathematically
expressed as:

LC = − 1

|I|
1

|M|
∑
i∈I

∑
m∈M

I(hm
i ,hc,i), (9)

where I(·, ·) denotes the mutual information which quan-
tifies the agreement between two representations, which is
implemented by the InfoNCE estimator [26]. Specifically, for
I(hm

i ,hc,i), we set (hm
i ,hc,i) as positive samples, while all

other item embeddings in an individual modality (hm
i ,hm

j )
and the fused multimodal embeddings (hm

i ,hc,j)(j ̸=i) are
considered as negatives:

I(hm
i ,hc,i) =

log
eθ(h

m
i ,hc,i)/τ

eθ(h
m
i ,hc,i)/τ +

∑
j ̸=i

(
eθ(h

m
i ,hc,j)/τ + eθ(h

m
i ,hm

j )/τ
) ,
(10)

where τ ∈ R is a temperature parameter and θ(·, ·) is the
critic function which is a simple cosine similarity function in
this work.

The proposed objective also conceptually relates to con-
trastive knowledge distillation [31], where several teacher
models (representations under different individual modali-
ties) and one student model (the modality-shared represen-
tations) are employed. By forcing the embeddings between
several teachers and a student to be close, these modality-
shared representations adaptively collect information from
all modality-aware item relations. Additionally, the multi-
modal contrastive framework serves as a self-supervised

auxiliary task, where the external self-supervision signals are
introduced to learn better item representations involved with
relation information from multiple modalities, which would
further alleviate the cold-start problem.

3.3.2 Mining Modality-Specific Information
Multiple modalities usually convey both complementary and
supplementary information [25]. Our contrastive learning
framework could adaptively extract the modality-shared sup-
plementary information from all modalities. The distinctive
characteristics held by each modality are also important for
fully understanding item relationships. Previous work [32–
34] notices that the modality-specific information could
complement the modality-shared features captured in the
invariant space and provides comprehensive multimodal
representations.

To this end, we propose to mine modality-specific repre-
sentations. Specifically, the modality-specific representations
hm
s,i of each modality m are obtained by subtracting the

modality-common representations hc,i from the modality
representation hm

i :

hv
s,i = hv

i − hc,i, (11)

ht
s,i = ht

i − hc,i. (12)

To ensure that the modality-specific representations of
different modalities do not encode shared information of
each other, we employ a soft orthogonality constraint:

LS =
1

|I|
∑
i∈I

∥hv
s,i

⊤ht
s,i∥2. (13)

Then, we employ a simplified attention module to fuse
the modality-shared and modality-specific representations.
The importance of each representation corresponding to item
i can be formulated as:[

αc,i, α
v
s,i, α

t
s,i

]
= softmax

(
q⊤
2

[
hc,i,h

v
s,i,h

t
s,i

])
, (14)

where q2 ∈ Rd denotes the attention vector. Then, the final
fused multimodal representation of item i can be represented
as:

hi = αc,ihc,i + αv
s,ih

v
s,i + αt

s,ih
t
s,i. (15)

3.4 Incorporating with Collaborative Filtering Methods

Unlike previous attempts which utilize multimodal features
based on ad-hoc user-item aggregation strategies, MICRO
separates the usage of multimodal features with the usage
of user-item interactions and is agnostic to downstream
CF methods. Specifically, we learn item representations
from mined item relations and then combine them with
downstream CF methods that model user-item interactions.
It is flexible and could be served as a play-and-plug module
for any CF methods.

Firstly, we represent user preference by aggregating the
semantic item-item relation information of interacted items:

hu =
1

|Iu|
∑
i∈Iu

hi. (16)

We denote the output user and item embeddings from CF
methods as x̃u, x̃i ∈ Rd, respectively. Finally, the user-item
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preference scores are obtained by taking inner product of
enhanced user embeddings and item embeddings:

ŷui =

(
x̃u +

hu

∥hu∥

)⊤ (
x̃i +

hi

∥hi∥

)
. (17)

3.5 Optimization

We adopt the Bayesian Personalized Ranking (BPR) loss [35]
to compute pair-wise rankings, which encourage the predic-
tion of an observed entry to be higher than its unobserved
counterparts:

LBPR = −
∑
u∈U

∑
i∈Iu

∑
j /∈Iu

lnσ (ŷui − ŷuj) , (18)

where Iu indicates the observed items associated with user
u and (u, i, j) denotes the pairwise training triples where
i ∈ Iu is the positive item and j /∈ Iu is the negative item
sampled from unobserved interactions. σ(·) is the sigmoid
function.

The overall objective function can be formulated as:

L = LBPR + βCLC + βSLS, (19)

where βC, βS are hyperparameters to control the effect of the
contrastive auxiliary task and the orthogonality constraint,
respectively.

4 EXPERIMENTS

In this section, we conduct experiments on three widely used
real-world datasets to answer the following four research
questions:

• RQ1: How does our model perform compared with the
state-of-the-art multimedia recommendation methods
and other CF methods in both warm-start and cold-start
settings?

• RQ2: How do the structure mining and contrastive
learning modules contribute to the model performance?

• RQ3: How sensitive is our model under the perturbation
of several key hyperparameters?

• RQ4: How does each modality contribute to the final
representations?

4.1 Experimental Settings

4.1.1 Datasets

We conduct experiments on three categories of widely
used Amazon datasets introduced by McAuley et al. [36]:
(a) Clothing, Shoes and Jewelry, (b) Sports and Outdoors,
and (c) Baby, which we refer to as Clothing, Sports, and
Baby in brevity. The statistics of these three datasets are
summarized in Table 3. The three datasets include both
visual and textual modalities. We use the 4,096-dimensional
visual features that have been extracted and published. For
the textual modality, we extract textual embeddings by
concatenating the title, descriptions, categories, and brand
of each item and utilize sentence-transformers [37] to obtain
1,024-dimensional sentence embeddings.

TABLE 3
Statistics of the datasets

Dataset1 # Users # Items # Interactions Density

Clothing 39,387 23,033 237,488 0.00026
Sports 35,598 18,357 256,308 0.00039
Baby 19,445 7,050 139,110 0.00101

1 Datasets can be accessed at http://jmcauley.ucsd.edu/da
ta/amazon/links.html.

4.1.2 Baselines
To evaluate the effectiveness of our proposed model, we
compare it with several state-of-the-art recommendation
models. These baselines fall into two groups: CF meth-
ods (i.e., ItemKNN, MF, NGCF, LightGCN, SGL) and
deep content-aware recommendation models (i.e., VBPR,
MMGCN, GRCN).

• ItemKNN [38] computes the similarity between the
items, and compute the similarity between a basket
of items and a candidate recommender item.

• MF [35] optimizes Matrix Factorization using the
Bayesian personalized ranking (BPR) loss, which ex-
ploits the user-item direct interactions only as the target
value of interaction function.

• NGCF [11] explicitly models user-item interactions by
a bipartite graph. By leveraging graph convolutional
operations, it allows the embeddings of users and items
to interact with each other to harvest the collaborative
signals as well as high-order connectivity signals.

• LightGCN [13] argues the unnecessarily complicated
design of GCNs (i.e., feature transformation and non-
linear activation) for recommendation systems and
proposes a light model which only consists of two
essential components: light graph convolution and layer
combination.

• SGL [39] generates multiple views of a node and
maximizing the agreement between different views of
the same node.

• VBPR [4] integrates the visual features and ID embed-
dings of each item as its representation based upon the
BPR model and feeds them into the matrix factorization
framework. In our experiments, we concatenate multi-
modal features as content information to predict the
interactions between users and items.

• MMGCN [14] is one of the state-of-the-art multimodal
recommendation methods, which constructs modal-
specific graphs and refines modal-specific representa-
tions for users and items. It aggregates all model-specific
representations to obtain the representations of users or
items for prediction.

• GRCN [15] is also one of the state-of-the-arts multi-
modal recommendation methods. It refines user-item
interaction graph by identifying the false-positive feed-
back and prunes the corresponding noisy edges in the
interaction graph.

4.1.3 Evaluation Protocols
We conduct experiments in both warm-start and cold-start
settings.

Warm-start setting. For each dataset, we select 80% of
historical interactions of each user to constitute the training

http://jmcauley.ucsd.edu/data/amazon/links.html
http://jmcauley.ucsd.edu/data/amazon/links.html
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TABLE 4
Performance comparison of our MICRO with different baselines in terms of Recall@20 (R@20), Precision@20 (P@20), and NDCG@20. The best

performance is highlighted in bold and the second is highlighted by underlines. ∆Improvement indicates the relative improvement of MICRO
compared to the best baseline in percentage. All improvements are significant with p-value ≤ 0.05.

Model
Clothing Sports Baby

R@20 P@20 NDCG@20 R@20 P@20 NDCG@20 R@20 P@20 NDCG@20

ItemKNN 0.0280 0.0014 0.0131 0.0410 0.0022 0.0212 0.0317 0.0017 0.0152
MF 0.0191 0.0010 0.0088 0.0430 0.0023 0.0202 0.0440 0.0024 0.0200

NGCF 0.0387 0.0020 0.0168 0.0728 0.0038 0.0332 0.0591 0.0032 0.0261
LightGCN 0.0470 0.0024 0.0215 0.0803 0.0042 0.0377 0.0698 0.0037 0.0319

SGL 0.0598 0.0030 0.0268 0.0905 0.0047 0.0412 0.0745 0.0040 0.0328

VBPR 0.0481 0.0024 0.0205 0.0582 0.0031 0.0265 0.0486 0.0026 0.0213
MMGCN 0.0501 0.0024 0.0221 0.0638 0.0034 0.0279 0.0640 0.0032 0.0284

GRCN 0.0631 0.0032 0.0276 0.0833 0.0044 0.0377 0.0754 0.0040 0.0336

MICRO 0.0824 0.0042 0.0371 0.1005 0.0052 0.0467 0.0898 0.0047 0.0407
∆Improvement 30.5% 31.3% 34.4% 11.0% 10.6% 13.3% 19.1% 17.5% 21.1%

set, 10% for validation, and the remaining 10% for the test
set. For each observed user-item interaction, we treat it as a
positive pair and then conduct the negative sampling strategy
to pair them with one negative item that the user does not
interact before.

Cold-start setting. We remove all user-item interaction
pairs associated with a randomly selected 20% item set from
the training set. We further divide the half of the items (10%)
into the validation set and half (10%) into the test set. In
other words, these items are entirely unseen in the training
set.

We adopt three widely-used metrics to evaluate the
performance of preference ranking: Recall@k, NDCG@k,
and Precision@k. By default, we set k = 20 and report the
averaged metrics for all users in the test set.

4.1.4 Implementation Details
We implemente our method in PyTorch [40] and set the
embedding dimension d fixed to 64 for all models for fair
comparison. We optimize all models with the Adam [41]
optimizer, where the batch size is fixed at 1024. We use the
Xavier initializer [42] to initialize the model parameters. The
optimal hyper-parameters are determined via grid search
on the validation set: the learning rate is set to 0.0005, the
coefficient of ℓ2 normalization is set to 10−4. The k of kNN
sparsification is set to 10, the λ of skip connection is set to
0.7, and the temperature parameter τ is set to 0.5. Besides,
we stop training if Recall@20 on the validation set does not
increase for 10 successive epochs to avoid overfitting.

4.2 Performance Comparison (RQ1)
We start by comparing the performance of all methods, and
then explore how the our method alleviate the cold-start
problem. In this subsection, we combine MICRO with Light-
GCN as a downstream CF method, and will also conduct
experiments with different CF methods in Section 4.3.

4.2.1 Overall Performance
Table 4 reports the performance comparison results, from
which we can observe:

• Our method MICRO significantly outperforms both CF
methods and content-aware methods, verifying the effec-
tiveness of our methods. Specifically, MICRO improves

over the strongest baselines in terms of Recall@20 by
24.1%, 18.6%, and 18.3% in Clothing, Sports, and Baby,
respectively. This indicates that our proposed method
is well-designed for multimedia recommendation by
discovering underlying item-item relationships and is
able to conduct fine-grained multimodal fusion through
the contrastive auxiliary task.

• Compared with CF methods, content-aware methods
yield better overall performance, which indicates that
multimodal features provide rich content information
about items, and can boost recommendation accuracy.
Even without utilizing item content information, the
self-supervised method SGL achieves competitive per-
formance on the three datasets and even outperforms
the powerful content-aware method GRCN, which
demonstrates that the auxiliary self-supervised task can
also improve node representation learning.

• Additionally, existing content-aware recommendation
models are highly dependent on the representativeness
of multimodal features and thus obtain fluctuating
performance over different datasets. For the Clothing
dataset where visual features are very important in
revealing item attributes [4, 5], VBPR, MMGCN, and
GRCN outperform all CF methods. For the other two
datasets where multimodal features may not directly
reveal item attributes, content-aware methods obtain
relatively small improvements. The performance of
VBPR and MMGCN is even inferior to the CF method
LightGCN. Different from existing content-aware meth-
ods, we discover the latent item relationships underlying
multimodal features instead of directly using them as
side information. The latent item relationships are less
dependent on the representativeness of multimodal fea-
tures and thus we are able to obtain robust performance.

4.2.2 Performance in the Cold-start Setting
The cold-start problem remains a prominent challenge in
recommendation systems [43]. Multimodal features of items
provide rich content information, which can be exploited
to alleviate the cold-start problem. We conduct cold-start
experiments and compare with representative baselines.
MICRO w/o. fusion is the simplified variant of MICRO,
which discards multimodal fusion described in Section 3.3
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TABLE 5
Performance of our proposed MICRO on top of different downstream collaborative filtering (CF) methods.

Model
Clothing Sports Baby

R@20 P@20 NDCG@20 R@20 P@20 NDCG@20 R@20 P@20 NDCG@20

MF 0.0191 0.0010 0.0088 0.0430 0.0023 0.0202 0.0440 0.0024 0.0200
MF+feats 0.0456 0.0023 0.0197 0.0889 0.0047 0.0403 0.0701 0.0037 0.0306

MICRO/feats 0.0729 0.0037 0.0323 0.0889 0.0047 0.0403 0.0840 0.0044 0.0376
MICRO w/o. fusion 0.0758 0.0038 0.0339 0.0940 0.0050 0.0436 0.0827 0.0044 0.0366

MICRO w/o. specific 0.0785 0.0039 0.0351 0.0968 0.0051 0.0450 0.0845 0.0045 0.0384
MICRO w/o. preference 0.0727 0.0036 0.0321 0.0883 0.0047 0.0408 0.0752 0.0040 0.0336

MICRO 0.0797 0.0040 0.0355 0.0971 0.0051 0.0450 0.0854 0.0045 0.0385

NGCF 0.0387 0.0020 0.0168 0.0728 0.0038 0.0332 0.0591 0.0032 0.0261
NGCF+feats 0.0436 0.0022 0.0190 0.0748 0.0040 0.0344 0.0660 0.0035 0.0295

MICRO/feats 0.0676 0.0034 0.0297 0.0932 0.0049 0.0422 0.0799 0.0042 0.0356
MICRO w/o. fusion 0.0639 0.0032 0.0288 0.0900 0.0048 0.0408 0.0766 0.0041 0.0340

MICRO w/o. specific 0.0735 0.0037 0.0333 0.0957 0.0049 0.0438 0.0799 0.0042 0.0360
MICRO w/o. preference 0.0639 0.0032 0.0282 0.0888 0.0040 0.0047 0.0785 0.0041 0.0337

MICRO 0.0743 0.0038 0.0336 0.0962 0.0051 0.0440 0.0805 0.0042 0.0355

LightGCN 0.0470 0.0024 0.0215 0.0803 0.0042 0.0377 0.0698 0.0037 0.0319
LightGCN+feats 0.0477 0.0024 0.0208 0.0754 0.0040 0.0350 0.0793 0.0042 0.0344

MICRO/feats 0.0736 0.0037 0.0331 0.0945 0.0050 0.0433 0.0892 0.0047 0.0404
MICRO w/o. fusion 0.0729 0.0037 0.0331 0.0925 0.0049 0.0428 0.0849 0.0045 0.0377

MICRO w/o. specific 0.0803 0.0042 0.0368 0.0981 0.0051 0.0461 0.0880 0.0046 0.0404
MICRO w/o. preference 0.0796 0.0040 0.0358 0.0992 0.0051 0.0461 0.0890 0.0047 0.0401

MICRO 0.0824 0.0042 0.0371 0.1005 0.0052 0.0467 0.0898 0.0047 0.0407
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Fig. 3. Performance comparison of our method with different baselines in
the cold-start setting.

and only utilizes the BPR loss in Eq. (18). Figure 3 reports
the results of performance, from which we can observe:

• Both MICRO w/o. fusion and MICRO can alleviate
the cold-start problem and outperform all baselines on
three datasets. They learn item graphs from multimodal
features, along which cold-start items will get similar
feedbacks from relevant neighbors through neighbor-

hood aggregation of graph convolutions.
• Additionally, MICRO outperforms MICRO w/o. fusion

on three datasets. In MICRO, the multimodal contrastive
framework serves as a self-supervised auxiliary task. The
self-supervision signals are constructed by maximizing
the agreement between item representations under
individual modalities and the multimodal fused repre-
sentations to learn better item representations which
encode item relationships from multiple modalities.
In this way, the cold-start problem would be further
alleviated.

• CF methods MF and LightGCN obtain poor performance
under the cold-start setting in general, primarily because
they only leverage users’ feedbacks to predict the interac-
tions between users and items. Although these methods
may work well for items with sufficient feedbacks, they
cannot help in the cold-start setting, since no user-item
interaction is available to update the representations of
cold-start items.

• The content-aware model VBPR outperforms CF meth-
ods in general, which indicates that the content in-
formation provided by multimodal features benefits
recommendation for cold-start items. In particular, con-
tent information can help bridge the gap between the
existing items to cold-start items. However, some graph-
based content-aware methods such as GRCN, although
perform well in the warm-start setting, obtain poor
performance in the cold-start setting. GRCN utilizes
multimodal features on user-item interaction bipartite
graphs, which is also heavily dependent on user-item
interactions. For cold-start items, they never interact
with users and become isolated nodes in the user-item
graphs, leading to deteriorated performance.
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4.3 Ablation Studies (RQ2)
In this subsection, we combine MICRO with three common-
used CF methods, i.e., MF, NGCF, and LightGCN to validate
the effectiveness and flexibility of our proposed method. For
each CF method, we compare it with the following variants:

• CF+feats does not consider latent item-item relation-
ships and directly uses transformed multimodal features
to replace the item representations learned from item
graphs in Eq. (17).

• MICRO/feats uses multimodal features as the input
initial item embeddings of graph convolutions instead
of ID embeddings.

• MICRO w/o. fusion discards the modality fusion in
Section 3.3 and only utilizes the BPR loss in Eq. (18),
which is equivalent to LATTICE [44].

• MICRO w/o. specifc: discards the modality-specific
information mining module in Section 3.3.2. Specifically,
it only utilizes modality-shared representation hc

i in
Eq. (8) as the final multimodal item representation and
LBPR,LC in Eq. (18).

• MICRO w/o. preference: ignores the user preference hu

in Eq. (17) and producing user-item score with ŷui =

(x̃u)
⊤
(
x̃i +

hi

∥hi∥

)
.

Table 5 summarizes the performance, from which we have
the following observations:

• MICRO significantly and consistently outperforms all
original CF methods and CF+feats variants on three
datasets, obtaining up to 68.8% improvements over the
CF+feats variants, verifying the flexibility of our plug-in
paradigm.

• Even without the contrastive auxiliary task, MICRO
w/o. fusion obtains significant improvements over
CF+feats, indicating the effectiveness of discovering
latent item-item relationships from multimodal features.
Furthermore, the improvements between MICRO and
MICRO w/o. fusion show the importance of fine-
grained multimodal fusion, through which we can
capture item relationships shared between modalities
adaptively.

• Based on the learned item graph structures, MI-
CRO/feats employs graph convolutions on multimodal
features. Our proposed method MICRO utilizes the same
learned structures but employ graph convolutions on
item ID embeddings, which aims to directly model item
affinities. The improvements between them validate the
effectiveness of explicitly modeling item affinities where
multimodal features are only used to bridge semantic
relationships between items.

• Multiple modalities convey both complementary and
supplementary information. The modality-specific infor-
mation could complement the modality-shared features
captured in the invariant space and provides compre-
hensive multimodal representations. The improvements
between MICRO and MICRO w/o. specific indicates the
specific information could also boost recommendation.

• The improvements between MICRO and MICRO w/o.
preference indicates the effectiveness of adding user
preference representations by aggregating the multi-
modal representation of history items. Different from
the aggregating operation in CF methods which encodes
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Fig. 4. Performance comparison of various hyperparameters k and λ.

collaborative signals, we aim to encode semantic item-
item relationships conveyed by multimodal content into
the user preference representation.

4.4 Sensitivity Analysis (RQ3)
Since the graph structure learning layer and the contrastive
auxiliary task play pivotal roles in our method, in this
subsection, we conduct sensitivity analysis with different
hyper-parameters on graph structure learning layers and the
contrastive auxiliary task. Firstly, we investigate performance
of MICRO-LightGCN with respect to different k value
of the k-NN sparsification operation since k is important
which determines the number of neighbors of each item,
and controls the amount of information propagated from
neighbors. Secondly, we discuss how the skip connection
coefficient λ affects the performance which controls the
amount of information from the initial graph structures.
Finally, we explore how the auxiliary task magnitude βc and
βs affects the performance.

4.4.1 Impact of Varied k Values
Figures 4(a)(c)(e) present the results of performance compari-
son. k = 0 means no item relationships are included and the
model is degenerated to LightGCN. We have the following
observations:

• Our method gains significant improvement between
k = 0 and k = 5, which validates the rationality of item



10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023

relationships mined from multimodal features. Even if
only a small part of the neighbors are included, we can
obtain better item representations by aggregating mean-
ingful and important information from the neighbors,
which boost the recommendation performance.

• Furthermore, the performance first improves as k in-
creases, which verifies the effectiveness of information
aggregation along item-item graphs since more neigh-
bors bring more meaningful information that helps to
make more accurate recommendations.

• The trend, however, declines when k continues to
increase, since there may exist many unimportant neigh-
bors that will inevitably introduce noise to information
propagation. This demonstrates the necessity of conduct-
ing kNN sparsification on the learned dense graph.

4.4.2 Impact of Varied Coefficients λ

Figures 4(b)(d)(f) present the performance comparison. λ = 0
means only consider the graph structure learned by the
transformed multimodal features, and λ = 1 means we
only consider the initial structure generated by the raw
multimodal features. We have the following observations:

• When we set λ = 0, the model obtains poor performance.
It only learns graph structure from the transformed
features, completely updating the adjacency matrix
every time, ignoring the rich and useful information of
raw features and resulting in fluctuated training process.

• The performance first grows as λ becomes larger, vali-
dating the importance of initial structures constructed
by raw multimodal features. However, it begins to
deteriorate when λ continues to increase, since raw
features are often noisy due to the inevitably error-prone
data measurement or collection process. Learning the
graph structures dynamically can reduce noise.

• Overall, there are no apparent sharp rises and falls,
indicating that our method is not that sensitive to the
selection of λ. Notably, all models surpass the baselines
(c.f. Table 4), proving the effectiveness of item graphs.

4.4.3 Impact of Varied Coefficients β

We investigate how the coefficients of the contrastive aux-
iliary task βc and the orthogonality constraint βs affect the
performance. Figures 5(a)(c)(e) report the performance. We
can observe that:

• With the increase of βc and βs, the performances on all
datasets first rise and is always better than βc = 0 and
βs = 0. The primary recommendation task achieves
decent gains when jointly optimized with the two
auxiliary tasks even with a small βc and βs.

• However, it begins to decline when βc and βs continue to
increase. A small β can promote the primary task, while
a larger one would mislead it. The benefits brought by
the self-supervised task and orthogonality constraint
could be easily neutralized and the recommendation
task is sensitive to the magnitude of them.

4.4.4 Impact of Varied Layer Number L

In order to investigate the effect of multiple graph convolu-
tion layers and high-order information, we search the number
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Fig. 5. Performance comparison of various hyperparameters β and L.

of layers L in the range of {0, 1, 2, 3, 4, 5}. Figures 6 report
the performance. We can observe that:

• When L increases from 0 to 1, the performance increases
significantly on all datasets, indicating that the item-item
relationships can effectively boost recommendation.

• The best performed hop varies from different datasets.
Specifically, MICRO achieves the best performance
with L = 1 in Clothing, L = 2 in Sports and Baby.
Applying a too deep architecture might introduce noisy,
unimportant item relationships to the representation
learning.

• When varying the number of layers, MICRO consistently
and significantly outperforms baselines on all datasets.
It again verifies the effectiveness of item-item relation-
ships.

4.5 Investigation of the Contribution of Each Modality
(RQ4)
In this subsection, we aim to explore the contribution of
each modality. Table 6 reports the performance comparison
over different modalities. We observe that the performances
of utilizing multiple modalities are better than that of ones
within the single modality, demonstrating that incorporating
the information from multiple modalities facilitates compre-
hensive understanding of items. Additionally, textual modal-
ity contributes more than visual modality in general. It is
reasonable since textual modality provide more fine-grained
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TABLE 6
Performance comparison over different modalities.

Dataset Model R@20 P@20 NDCG@20

Clothing
Visual 0.0626 0.0032 0.0277
Textual 0.0765 0.0038 0.0349

Both 0.0824 0.0042 0.0371

Sports
Visual 0.0868 0.0046 0.0409
Textual 0.0940 0.0049 0.0435

Both 0.1005 0.0052 0.0467

Baby
Visual 0.0768 0.0040 0.0339
Textual 0.0835 0.0043 0.0380

Both 0.0898 0.0047 0.0407

information which directly reveals the titles, categories and
descriptions of items while visual modality only provides
coarse-grained visual appearances.

5 RELATED WORK

5.1 Multimedia Recommendation

Collaborative filtering (CF) has achieved great success in
recommendation systems, which leverage users’ feedbacks
(such as clicks and purchases) to predict the preference
of users and make recommendations. However, CF-based
methods suffer from sparse data with limited user-item in-
teractions and rarely accessed items. To address the problem
of data sparsity, it is important to exploit other information
besides user-item interactions. Multimedia recommendation
systems consider massive multimedia content information
of items, which have been successfully applied to many
applications, such as e-commerce, instant video platforms
and social media platforms [36, 45–47].

For example, VBPR [4] extends matrix factorization by
incorporating visual features extracted from product images
to improve the performance. DVBPR [48] attempts to jointly
train the image representation as well as the parameters in a
recommender model. Sherlock [18] incorporates categorical
information for recommendation based on visual features.
DeepStyle [5] disentangles category information from visual
representations for learning style features of items and
sensing preferences of users. ACF [6] introduces an item-
level and component-level attention model for inferring the
underlying users’ preferences encoded in the implicit user
feedbacks. VECF [49] models users’ various attentions on
different image regions and reviews. MV-RNN [50] uses
multimodal features for sequential recommendation in a
recurrent framework. Recently, Graph Neural Networks

(GNNs) have been introduced into recommendation sys-
tems [11, 12, 51] and especially multimodal recommenda-
tion systems [14, 15, 52]. MMGCN [14] constructs modal-
specific graph and conducts graph convolutional operations,
to capture the modal-specific user preference and distills
the item representations simultaneously. In this way, the
learned user representation can reflect the users’ specific
interests on items. Following MMGCN, GRCN [15] focuses
on adaptively refining the structure of interaction graph to
discover and prune potential false-positive edges. There are
several prior studies [7, 8, 16] that propose to explore col-
laborative item relationships through high-order item-user-
item co-occurrences. For example, HUIGN [16] constructs a
co-interacted item graph which exhibits users’ intents at
different levels. It aims to learn multi-level user intents
from the co-interacted patterns of items and further enhance
the recommendation performance. PAMD [34] takes the
modality-specific information which could complement the
modality-shared features into consideration.

The above methods directly utilize multimodal features
as side information of each item and disregard fine-grained
multimodal fusion. In our model, we step further by dis-
covering semantic item-item relationships from multimodal
features, and conduct fine-grained multimodal fusion to
inject complementary item-item relationships from multiple
modalities into the item representations.

5.2 Deep Graph Structure Learning

GNNs have shown great power on analyzing graph-
structured data and have been widely employed for graph
analytical tasks across a variety of domains, including
node classification [9, 53], link prediction [54], information
retrieval [55, 56], etc. However, most GNN methods are
highly sensitive to the quality of graph structures and usually
require a perfect graph structure that are hard to construct
in real-world applications [57]. Since GNNs recursively
aggregate information from neighborhoods of one node to
compute its node embedding, such an iterative mechanism
has cascading effects — small noise in a graph will be
propagated to neighboring nodes, affecting the embeddings
of many others. Additionally, there also exist many real-
world applications where initial graph structures are not
available. Recently, considerable literature has arisen around
the central theme of Graph Structure Learning (GSL), which
targets at jointly learning an optimized graph structure and
corresponding representations. There are three categories of
GSL methods: metric learning [20–22], probabilistic model-
ing [57–59], and direct optimization approaches [60–62].

For example, IDGL [22] casts the graph learning problem
into a similarity metric learning problem and leverage
adaptive graph regularization for controlling the quality
of the learned graph; DGM [63] predicts a probabilistic
graph, allowing a discrete graph to be sampled accordingly
in order to be used in any graph convolutional operator.
NeuralSparse [58] considers the graph sparsification task
by removing task-irrelevant edges. It utilizes a deep neural
network to learn k-neighbor subgraphs by selecting at most k
neighbors for each node in the graph. We kindly refer to [64]
for a recent overview of approaches for graph structure
learning.
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In personalized recommendation, although user-item
interactions can be formulated as a bipartite graph naturally,
item-item relations remain rarely explored. To model item re-
lationships explicitly, we employ metric learning approaches
to represent edge weights as a distance measure between
two end nodes, which fits for multimedia recommendation
since rich content information can be included to measure
the semantic relationship between two items.

5.3 Contrastive Learning

Self-supervised learning is an emerging technique to learn
representations by self-defined supervision signals generated
from raw data without relying on annotated labels. Con-
trastive learning (CL) has become a dominant branch of
self-supervised learning, which targets at obtaining robust
and discriminative representations by grouping positive
samples closer and negative samples far from each other.
For visual data, negative samples can be generated using a
multiple-stage augmentation pipeline [26, 65, 66], consisting
of color jitter, random flip, cropping, resizing, rotation, color
distortion, etc. The latest advances extend self-supervised
learning to graph representation learning. Velickovic et al.
[67] introduce an objective function measuring the Mutual In-
formation (MI) between global graph embeddings and local
node embeddings. GraphCL [68] and GRACE [53] propose a
node-level contrastive objective to simplify previous work.
Furthermore, Zhu et al. [69] propose a contrastive method
with adaptive augmentation that incorporates various priors
for topological and semantic aspects of the graph. Generally,
most CL work differs from each other in terms of the
generation of negative samples and contrastive objectives.

There also exist several works combining self-supervised
learning with collaborative filtering [39, 70], session-based
recommendation [71], social recommendation [72, 73] and
multimedia recommendation [74, 75]. Wu et al. [39] introduce
self-supervised auxiliary task into collaborative filtering
and improve both accuracy and robustness of GNNs for
recommendation. Yao et al. [70] utilize self-supervised learn-
ing to learn better latent relationship of item features for
large-scale item recommendations. Zhou et al. [71] utilize
contrastive learning to learn the correlations among attribute,
item, subsequence, and sequence. Wei et al. [75] aim to
maximize the mutual information between item content and
collaborative signals to alleviate the cold-start problem.

In this work, since multiple modality-aware graphs are in-
volved, the individual modality-aware item representations
and multimodal fused representations are natural positive
pairs. We utilize contrastive learning to maximize the agreement
between item representations under an individual modality and
the multimodal fused representations. In this way, the fused
multimodal representations can adaptively capture item-
item relationships shared between multiple modalities in a
self-supervised manner.

6 CONCLUSION

In this paper, we have proposed the latent structure mining
method (MICRO) for multimodal recommendation, which
leverages graph structure learning to discover latent item
relationships underlying multimodal features and devises

a novel contrastive framework to fuse multimodal item
relationships. In particular, we first develop a modality-aware
structure learning layer and graph convolutions to inject
modality-aware item relationships into item representations.
Furthermore, we propose a novel multimodal contrastive
framework to adaptively capture item-item relationships
shared between multiple modalities in a self-supervised
manner. Finally, the resulting enhanced item representations
are infused with item relationships in multiple modalities,
which will be added into the output item embeddings of
CF models to make recommendations. Empirical results on
three public datasets have demonstrated the effectiveness of
our proposed model.
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