
Graph Contrastive Learning with Adaptive Augmentation

Yanqiao Zhu1,2,*, Yichen Xu3,*, Feng Yu4, Qiang Liu1,2, Shu Wu1,2,†, and Liang Wang1,2
1Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences

2School of Artificial Intelligence, University of Chinese Academy of Sciences
3School of Computer Science, Beijing University of Posts and Telecommunications 4Alibaba Group

yanqiao.zhu@cripac.ia.ac.cn, linyxus@bupt.edu.cn
yf271406@alibaba-inc.com, {qiang.liu, shu.wu, wangliang}@nlpr.ia.ac.cn

ABSTRACT
Recently, contrastive learning (CL) has emerged as a successful
method for unsupervised graph representation learning. Most graph
CL methods first perform stochastic augmentation on the input
graph to obtain two graph views and maximize the agreement of
representations in the two views. Despite the prosperous devel-
opment of graph CL methods, the design of graph augmentation
schemes—a crucial component in CL—remains rarely explored. We
argue that the data augmentation schemes should preserve intrin-
sic structures and attributes of graphs, which will force the model
to learn representations that are insensitive to perturbation on
unimportant nodes and edges. However, most existing methods
adopt uniform data augmentation schemes, like uniformly drop-
ping edges and uniformly shuffling features, leading to suboptimal
performance. In this paper, we propose a novel graph contrastive
representation learning method with adaptive augmentation that in-
corporates various priors for topological and semantic aspects of the
graph. Specifically, on the topology level, we design augmentation
schemes based on node centrality measures to highlight important
connective structures. On the node attribute level, we corrupt node
features by adding more noise to unimportant node features, to en-
force the model to recognize underlying semantic information. We
perform extensive experiments of node classification on a variety
of real-world datasets. Experimental results demonstrate that our
proposed method consistently outperforms existing state-of-the-art
baselines and even surpasses some supervised counterparts, which
validates the effectiveness of the proposed contrastive framework
with adaptive augmentation.
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1 INTRODUCTION
Over the past few years, graph representation learning has emerged
as a powerful strategy for analyzing graph-structured data. Graph
representation learning using Graph Neural Networks (GNN) has
received considerable attention, which aims to transform nodes to
low-dimensional dense embeddings that preserve graph attribu-
tive and structural features. However, existing GNN models are
mostly established in a supervised manner [20, 23, 44], which re-
quire abundant labeled nodes for training. Recently, Contrastive
Learning (CL), as revitalization of the classical Information Maxi-
mization (InfoMax) principle [26], achieves great success in many
fields, e.g., visual representation learning [1, 17, 41] and natural
language processing [4, 28]. These CL methods seek to maximize
the Mutual Information (MI) between the input (i.e. images) and
its representations (i.e. image embeddings) by contrasting positive
pairs with negative-sampled counterparts.

Inspired by previous CL methods, Deep Graph InfoMax (DGI)
[45] marries the power of GNN into InfoMax-based methods. DGI
firstly augments the original graph by simply shuffling node fea-
tures. Then, a contrastive objective is proposed to maximize the
MI between node embeddings and a global summary embedding.
Following DGI, GMI [32] proposes two contrastive objectives to
directly measure MI between input and representations of nodes
and edges respectively, without explicit data augmentation. More-
over, to supplement the input graph with more global information,
MVGRL [16] proposes to augment the input graph via graph dif-
fusion kernels [24]. Then, it constructs graph views by uniformly
sampling subgraphs and learns to contrast node representations to
global embeddings across the two views.

Despite the prosperous development of graph CL methods, data
augmentation schemes, proved to be a critical component for visual
representation learning [47], remain rarely explored in existing lit-
erature. Unlike abundant data transformation techniques available
for images and texts, graph augmentation schemes are non-trivial
to define in CL methods, since graphs are far more complex due
to the non-Euclidean property. We argue that the augmentation
schemes used in the aforementioned methods suffer from two draw-
backs. At first, simple data augmentation in either the structural
domain or the attribute domain, such as feature shifting in DGI
[45], is not sufficient for generating diverse neighborhoods (i.e.
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Figure 1: Our proposed deep Graph Contrastive representation learning with Adaptive augmentation (GCA) model. We first
generate two graph views via stochastic augmentation that is adaptive to the graph structure and attributes. Then, the two graphs
are fed into a shared Graph Neural Network (GNN) to learn representations. We train the model with a contrastive objective,
which pulls representations of one node together while pushing node representations away from other node representations in
the two views. N.B., we define the negative samples as all other nodes in the two views. Therefore, negative samples are from
two sources, intra-view (in purple) and inter-view nodes (in red).

contexts) for nodes, especially when node features are sparse, lead-
ing to difficulty in optimizing the contrastive objective. Secondly,
previous work ignores the discrepancy in the impact of nodes and
edges when performing data augmentation. For example, if we con-
struct graph views by uniformly dropping edges, removing some
influential edges will deteriorate the embedding quality. As the
representations learned by the contrastive objective tend to be in-
variant to corruption induced by the data augmentation scheme
[49], the data augmentation strategies should be adaptive to the
input graph to reflect its intrinsic patterns. Again, taking the edge
removing scheme as an example, we can give larger probabilities to
unimportant edges and lower probabilities to important ones, when
randomly removing the edges. Then, this scheme is able to guide
the model to ignore the introduced noise on unimportant edges
and thus learn important patterns underneath the input graph.

To this end, we propose a novel contrastive framework for un-
supervised graph representation learning, as shown in Figure 1,
which we refer to as Graph Contrastive learning with Adaptive
augmentation, GCA for brevity. In GCA, we first generate two cor-
related graph views by performing stochastic corruption on the
input. Then, we train the model using a contrastive loss to maxi-
mize the agreement between node embeddings in these two views.
Specifically, we propose a joint, adaptive data augmentation scheme
at both topology and node attribute levels, namely removing edges
and masking features, to provide diverse contexts for nodes in dif-
ferent views, so as to boost optimization of the contrastive objective.
Moreover, we identify important edges and feature dimensions via
centrality measures. Then, on the topology level, we adaptively drop
edges by giving large removal probabilities to unimportant edges
to highlight important connective structures. On the node attribute
level, we corrupt attributes by adding more noise to unimportant
feature dimensions, to enforce the model to recognize underlying
semantic information.

The core contribution of this paper is two-fold:
• Firstly, we propose a general contrastive framework for unsu-

pervised graph representation learning with strong, adaptive
data augmentation. The proposed GCA framework jointly

performs data augmentation on both topology and attribute
levels that are adaptive to the graph structure and attributes,
which encourages the model to learn important features
from both aspects.
• Secondly, we conduct comprehensive empirical studies us-

ing five public benchmark datasets on node classification
under the commonly-used linear evaluation protocol. GCA
consistently outperforms existing methods and our unsuper-
vised method even surpasses its supervised counterparts on
several transductive tasks.

To make the results of this work reproducible, we make all the code
publicly available at https://github.com/CRIPAC-DIG/GCA.

The remaining of the paper includes the following sections. We
briefly review related work in Section 2. In Section 3, we present the
proposed GCA model in detail. The results of the experiments are
analyzed in Section 4. Finally, we conclude the paper in Section 5.
For readers of interest, additional configurations of experiments and
details of proofs are provided in Appendix A and B, respectively.

2 RELATEDWORK
In this section, we briefly review prior work on contrastive repre-
sentation learning. Then, we review graph representation learning
methods. At last, we provide a summary of comparisons between
the proposed method and its related work.

2.1 Contrastive Representation Learning
Being popular in self-supervised representation learning, contrastive
methods aim to learn discriminative representations by contrasting
positive and negative samples. For visual data, negative samples can
be generated using a multiple-stage augmentation pipeline [1, 3, 6],
consisting of color jitter, random flip, cropping, resizing, rotation
[8], color distortion [25], etc. Existing work [17, 41, 48] employs a
memory bank for storing negative samples. Other work [1, 3, 50]
explores in-batch negative samples. For an image patch as the an-
chor, these methods usually find a global summary vector [1, 19] or
patches in neighboring views [18, 43] as the positive sample, and
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contrast them with negative-sampled counterparts, such as patches
of other images within the same batch [19].

Theoretical analysis sheds light on the reasons behind their
success [35]. Objectives used in these methods can be seen as max-
imizing a lower bound of MI between input features and their
representations [26]. However, recent work [42] reveals that down-
stream performance in evaluating the quality of representations
may strongly depend on the bias that is encoded not only in the
convolutional architectures but also in the specific estimator of the
InfoMax objective.

2.2 Graph Representation Learning
Many traditional methods on unsupervised graph representation
learning inherently follow the contrastive paradigm [11, 14, 22, 34].
Prior work on unsupervised graph representation learning focuses
on local contrastive patterns, which forces neighboring nodes to
have similar embeddings. For example, in the pioneering work
DeepWalk [34] and node2vec [11], nodes appearing in the same ran-
dom walk are considered as positive samples. Moreover, to model
probabilities of node co-occurrence pairs, many studies resort to
Noise-Contrastive Estimation (NCE) [12]. However, these random-
walk-based methods are proved to be equivalent to factorizing some
forms of graph proximity (e.g., multiplication of the adjacent matrix
to model high-order connection) [37] and thus tend to overly em-
phasize on the encoded structural information. Also, these methods
are known to be error-prone with inappropriate hyperparameter
tuning [11, 34].

Recent work on Graph Neural Networks (GNNs) employs more
powerful graph convolutional encoders over conventional meth-
ods. Among them, considerable literature has grown up around
the theme of supervised GNN [20, 23, 44, 46], which requires la-
beled datasets that may not be accessible in real-world applications.
Along the other line of development, unsupervised GNNs receive
little attention. Representative methods include GraphSAGE [15],
which incorporates DeepWalk-like objectives. Recent work DGI
[45] marries the power of GNN and CL, which focuses on maximiz-
ing MI between global graph-level and local node-level embeddings.
Specifically, to implement the InfoMax objective, DGI requires an
injective readout function to produce the global graph-level embed-
ding. However, it is too restrictive to fulfill the injective property
of the graph readout function, such that the graph embedding
may be deteriorated. In contrast to DGI, our preliminary work [52]
proposes to not rely on an explicit graph embedding, but rather
focuses on maximizing the agreement of node embeddings across
two corrupted views of the graph.

Following DGI, GMI [32] employs two discriminators to directly
measure MI between input and representations of both nodes and
edges without data augmentation; MVGRL [16] proposes to learn
both node- and graph-level representations by performing node
diffusion and contrasting node representations to augmented graph
summary representations. Moreover, GCC [36] proposes a pretrain-
ing framework based on CL. It proposes to construct multiple graph
views by sampling subgraphs based on random walks and then learn
model weights with several feature engineering schemes. However,
these methods do not explicitly consider adaptive graph augmenta-
tion at both structural and attribute levels, leading to suboptimal

Table 1: Comparison with related work.

Method Contrastive
objective Topology Attribute

DGI Node–global Uniform —
GMI Node–node — —

MVGRL Node–global Uniform —
GCA Node–node Adaptive Adaptive

performance. Unlike these work, the adaptive data augmentation
at both topology and attribute levels used in our GCA is able to pre-
serve important patterns underneath the graph through stochastic
perturbation.

Comparisons with related graph CL methods. In summary, we
provide a brief comparison between the proposed GCA and other
state-of-the-art graph contrastive representation learning methods,
including DGI [45], GMI [32], and MVGRL [16] in Table 1, where the
last two columns denote data augmentation strategies at topology
and attribute levels respectively. It is seen that the proposed GCA
method simplifies previous node–global contrastive scheme by
defining contrastive objective at the node level. Most importantly,
GCA is the only one that proposes adaptive data augmentation on
both topology and attribute levels.

3 THE PROPOSED METHOD
In the following section, we present GCA in detail, starting with
the overall contrastive learning framework, followed by the pro-
posed adaptive graph augmentation schemes. Finally, we provide
theoretical justification behind our method.

3.1 Preliminaries
Let G = (V, E) denote a graph, whereV = {𝑣1, 𝑣2, · · · , 𝑣𝑁 }, E ⊆
V × V represent the node set and the edge set respectively. We
denote the feature matrix and the adjacency matrix as 𝑿 ∈ R𝑁×𝐹
and 𝑨 ∈ {0, 1}𝑁×𝑁 , where 𝒙𝑖 ∈ R𝐹 is the feature of 𝑣𝑖 , and 𝑨𝑖 𝑗 = 1
iff (𝑣𝑖 , 𝑣 𝑗 ) ∈ E. There is no given class information of nodes in
G during training in the unsupervised setting. Our objective is
to learn a GNN encoder 𝑓 (𝑿 ,𝑨) ∈ R𝑁×𝐹 ′ receiving the graph
features and structure as input, that produces node embeddings
in low dimensionality, i.e. 𝐹 ′ ≪ 𝐹 . We denote 𝑯 = 𝑓 (𝑿 ,𝑨) as the
learned representations of nodes, where 𝒉𝑖 is the embedding of
node 𝑣𝑖 . These representations can be used in downstream tasks,
such as node classification and community detection.

3.2 The Contrastive Learning Framework
The proposed GCA framework follows the common graph CL par-
adigm where the model seeks to maximize the agreement of rep-
resentations between different views [16, 52]. To be specific, we
first generate two graph views by performing stochastic graph aug-
mentation on the input. Then, we employ a contrastive objective
that enforces the encoded embeddings of each node in the two
different views to agree with each other and can be discriminated
from embeddings of other nodes.
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In our GCA model, at each iteration, we sample two stochastic
augmentation functions 𝑡 ∼ T and 𝑡 ′ ∼ T , where T is the set of
all possible augmentation functions. Then, we generate two graph
views, denoted as G̃1 = 𝑡 (G) and G̃2 = 𝑡 ′(G), and denote node
embeddings in the two generated views as 𝑼 = 𝑓 (𝑿1,𝑨1) and
𝑽 = 𝑓 (𝑿2,𝑨2), where 𝑿∗ and 𝑨∗ are the feature matrices and
adjacent matrices of the views.

After that, we employ a contrastive objective, i.e. a discriminator,
that distinguishes the embeddings of the same node in these two
different views from other node embeddings. For any node 𝑣𝑖 , its
embedding generated in one view, 𝒖𝑖 , is treated as the anchor, the
embedding of it generated in the other view, 𝒗𝑖 , forms the positive
sample, and the other embeddings in the two views are naturally
regarded as negative samples. Mirroring the InfoNCE objective
[43] in our multi-view graph CL setting, we define the pairwise
objective for each positive pair (𝒖𝑖 , 𝒗𝑖 ) as
ℓ (𝒖𝑖 , 𝒗𝑖 ) =

log 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏︸      ︷︷      ︸
positive pair

+
∑︁
𝑘≠𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑘 )/𝜏︸            ︷︷            ︸
inter-view negative pairs

+
∑︁
𝑘≠𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖𝑘 )/𝜏︸            ︷︷            ︸
intra-view negative pairs

,

(1)

where 𝜏 is a temperature parameter. We define the critic 𝜃 (𝒖, 𝒗) =
𝑠 (𝑔(𝒖), 𝑔(𝒗)), where 𝑠 (·, ·) is the cosine similarity and 𝑔(·) is a non-
linear projection to enhance the expression power of the critic
function [3, 42]. The projection function 𝑔 in our method is imple-
mented with a two-layer perceptron model.

Given a positive pair, we naturally define negative samples as
all other nodes in the two views. Therefore, negative samples come
from two sources, that are inter-view and intra-view nodes, corre-
sponding to the second and the third term in the denominator in
Eq. (1), respectively. Since two views are symmetric, the loss for
another view is defined similarly for ℓ (𝒗𝑖 , 𝒖𝑖 ). The overall objective
to be maximized is then defined as the average over all positive
pairs, formally given by

J =
1

2𝑁

𝑁∑︁
𝑖=1
[ℓ (𝒖𝑖 , 𝒗𝑖 ) + ℓ (𝒗𝑖 , 𝒖𝑖 )] . (2)

To sum up, at each training epoch, GCA first draws two data
augmentation functions 𝑡 and 𝑡 ′, and then generates two graph
views G̃1 = 𝑡 (G) and G̃2 = 𝑡 ′(G) of graph G accordingly. Then,
we obtain node representations 𝑼 and 𝑽 of G̃1 and G̃2 using a
GNN encoder 𝑓 . Finally, the parameters are updated by maximizing
the objective in Eq. (2). The training algorithm is summarized in
Algorithm 1.

3.3 Adaptive Graph Augmentation
In essence, CL methods that maximize agreement between views
seek to learn representations that are invariant to perturbation
introduced by the augmentation schemes [49]. In the GCA model,
we propose to design augmentation schemes that tend to keep
important structures and attributes unchanged, while perturbing
possibly unimportant links and features. Specifically, we corrupt
the input graph by randomly removing edges and masking node

Algorithm 1: The GCA training algorithm
1 for 𝑒𝑝𝑜𝑐ℎ ← 1, 2, · · · do
2 Sample two stochastic augmentation functions 𝑡 ∼ T

and 𝑡 ′ ∼ T
3 Generate two graph views G̃1 = 𝑡 (G) and G̃2 = 𝑡 ′(G)

by performing corruption on G
4 Obtain node embeddings 𝑼 of G̃1 using the encoder 𝑓
5 Obtain node embeddings 𝑽 of G̃2 using the encoder 𝑓
6 Compute the contrastive objective J with Eq. (2)
7 Update parameters by applying stochastic gradient

ascent to maximize J

features in the graph, and the removing or masking probabilities
are skewed for unimportant edges or features, that is, higher for
unimportant edges or features, and lower for important ones. From
an amortized perspective, we emphasize important structures and
attributes over randomly corrupted views, which will guide the
model to preserve fundamental topological and semantic graph
patterns.

3.3.1 Topology-level augmentation. For topology-level augmenta-
tion, we consider a direct way for corrupting input graphs where
we randomly remove edges in the graph [52]. Formally, we sample
a modified subset Ẽ from the original E with probability

𝑃{(𝑢, 𝑣) ∈ Ẽ} = 1 − 𝑝𝑒𝑢𝑣, (3)

where (𝑢, 𝑣) ∈ E and 𝑝𝑒𝑢𝑣 is the probability of removing (𝑢, 𝑣).
Ẽ is then used as the edge set in the generated view. 𝑝𝑒𝑢𝑣 should
reflect the importance of the edge (𝑢, 𝑣) such that the augmentation
function are more likely to corrupt unimportant edges while keep
important connective structures intact in augmented views.

In network science, node centrality is a widely-used measure
that quantifies the influence of nodes in the graph [29]. We define
edge centrality𝑤𝑒

𝑢𝑣 for edge (𝑢, 𝑣) to measure its influence based on
centrality of two connected nodes. Given a node centrality measure
𝜑𝑐 (·) : V → R+, we define edge centrality as the average of two
adjacent nodes’ centrality scores, i.e. 𝑤𝑒

𝑢𝑣 = (𝜑𝑐 (𝑢) + 𝜑𝑐 (𝑣))/2,
and on directed graph, we simply use the centrality of the tail
node, i.e. 𝑤𝑒

𝑢𝑣 = 𝜑𝑐 (𝑣), since the importance of edges is generally
characterized by nodes they are pointing to [29].

Next, we calculate the probability of each edge based on its
centrality value. Since node centrality values like degrees may
vary across orders of magnitude [29], we first set 𝑠𝑒𝑢𝑣 = log𝑤𝑒

𝑢𝑣 to
alleviate the impact of nodes with heavily dense connections. The
probabilities can then be obtained after a normalization step that
transform the values into probabilities, which is defined as

𝑝𝑒𝑢𝑣 = min
(
𝑠𝑒max − 𝑠𝑒𝑢𝑣
𝑠𝑒max − 𝜇𝑒𝑠

· 𝑝𝑒 , 𝑝𝜏

)
, (4)

where 𝑝𝑒 is a hyperparameter that controls the overall probability
of removing edges, 𝑠𝑒max and 𝜇𝑒𝑠 is the maximum and average of 𝑠𝑒𝑢𝑣 ,
and 𝑝𝜏 < 1 is a cut-off probability, used to truncate the probabili-
ties since extremely high removal probabilities will lead to overly
corrupted graph structures.
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For the choice of the node centrality function, we use the follow-
ing three centrality measures, including degree centrality, eigen-
vector centrality, and PageRank centrality due to their simplicity
and effectiveness.

Degree centrality. Node degree itself can be a centrality measure
[29]. On directed networks, we use in-degrees since the influence of
a node in directed graphs are mostly bestowed by nodes pointing at
it [29]. Despite that the node degree is one of the simplest centrality
measures, it is quite effective and illuminating. For example, in ci-
tation networks where nodes represent papers and edges represent
citation relationships, nodes with the highest degrees are likely to
correspond to influential papers.

Eigenvector centrality. The eigenvector centrality [2, 29] of a
node is calculated as its eigenvector corresponding to the largest
eigenvalue of the adjacency matrix. Unlike degree centrality, which
assumes that all neighbors contribute equally to the importance
of the node, eigenvector centrality also takes the importance of
neighboring nodes into consideration. By definition, the eigenvector
centrality of each node is proportional to the sum of centralities of
its neighbors, nodes that are either connected to many neighbors or
connected to influential nodes will have high eigenvector centrality
values. On directed graphs, we use the right eigenvector to compute
the centrality, which corresponds to incoming edges. Note that since
only the leading eigenvector is needed, the computational burden
for calculating the eigenvector centrality is negligible.

PageRank centrality. The PageRank centrality [29, 30] is defined
as the PageRank weights computed by the PageRank algorithm.
The algorithm propagates influence along directed edges, and nodes
gathered the most influence are regarded as important nodes. For-
mally, the centrality values are defined by

𝝈 = 𝛼𝑨𝑫−1𝝈 + 1, (5)

where 𝜎 ∈ R𝑁 is the vector of PageRank centrality scores for each
node and 𝛼 is a damping factor that prevents sinks in the graph from
absorbing all ranks from other nodes connected to the sinks. We
set 𝛼 = 0.85 as suggested in Page et al. [30]. For undirected graphs,
we execute PageRank on transformed directed graphs, where each
undirected edge is converted to two directed edges.

(a) Degree (b) Eigenvector (c) PageRank

Figure 2: Visualization of edge centrality computed by three
schemes in the Karate club dataset, where centrality values
are shown in terms of the thickness of edges. Node colors
indicate two classes inside the network; two coaches are in
orange.

To gain an intuition of these proposed adaptive structural aug-
mentation schemes, we calculate edge centrality scores of the fa-
mous Karate club dataset [51], containing two groups of students
leading by two coaches respectively. The edge centrality values
calculated by different schemes are visualized in Figure 2. As can
be seen in the figure, though the three schemes exhibit subtle dif-
ferences, all of the augmentation schemes tend to emphasize edges
that connect the two coaches (in orange) inside the two groups
and put less attention to links between peripheral nodes across
groups. This verifies that the proposed node-centrality-based adap-
tive topology augmentation scheme can recognize fundamental
structures of the graph.

3.3.2 Node-attribute-level augmentation. On the node attribute
level, similar to the salt-and-pepper noise in digital image process-
ing [10], we add noise to node attributes via randomly masking a
fraction of dimensions with zeros in node features. Formally, we
first sample a random vector �̃� ∈ {0, 1}𝐹 where each dimension
of it independently is drawn from a Bernoulli distribution inde-
pendently, i.e., 𝑚𝑖 ∼ Bern(1 − 𝑝 𝑓

𝑖
),∀𝑖 . Then, the generated node

features 𝑿 is computed by

𝑿 = [𝒙1 ◦ �̃�; 𝒙2 ◦ �̃�; · · · ; 𝒙𝑁 ◦ �̃�]⊤ . (6)

Here [·; ·] is the concatenation operator, and ◦ is the element-wise
multiplication.

Similar to topology-level augmentation, the probability 𝑝 𝑓
𝑖

should
reflect the importance of the 𝑖-th dimension of node features. We
assume that feature dimensions frequently appearing in influential
nodes should be important, and define the weights of feature dimen-
sions as follows. For sparse one-hot nodes features, i.e. 𝑥𝑢𝑖 ∈ {0, 1}
for any node 𝑢 and feature dimension 𝑖 , we calculate the weight of
dimension 𝑖 as

𝑤
𝑓

𝑖
=

∑︁
𝑢∈V

𝑥𝑢𝑖 · 𝜑𝑐 (𝑢), (7)

where 𝜑𝑐 (·) is a node centrality measure that is used to quantify
node importance. The first term 𝑥𝑢𝑖 ∈ {0, 1} indicates the occur-
rence of dimension 𝑖 in node𝑢, and the second term 𝜑𝑖 (𝑢) measures
the node importance of each occurrence. To provide some intuition
behind the above definition, consider a citation network where each
feature dimension corresponds to a keyword. Then, keywords that
frequently appear in a highly influential paper should be considered
informative and important.

For dense, continuous node features 𝒙𝑢 of node 𝑢, where 𝑥𝑢𝑖
denotes feature value at dimension 𝑖 , we cannot directly count
the occurrence of each one-hot encoded value. Then, we turn to
measure the magnitude of the feature value at dimension 𝑖 of node
𝑢 by its absolute value |𝑥𝑢𝑖 |. Formally, we calculate the weights by

𝑤
𝑓

𝑖
=

∑︁
𝑢∈V

|𝑥𝑢𝑖 | · 𝜑𝑐 (𝑢). (8)

Similar to topology augmentation, we perform normalization on
the weights to obtain the probability representing feature impor-
tance. Formally,

𝑝
𝑓

𝑖
= min ©«

𝑠
𝑓
max − 𝑠

𝑓

𝑖

𝑠
𝑓
max − 𝜇

𝑓
𝑠

· 𝑝 𝑓 , 𝑝𝜏
ª®¬ , (9)
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where 𝑠 𝑓
𝑖
= log𝑤 𝑓

𝑖
, 𝑠 𝑓max and 𝜇

𝑓
𝑠 is the maximum and the average

value of 𝑠 𝑓
𝑖

respectively, and 𝑝 𝑓 is a hyperparameter that controls
the overall magnitude of feature augmentation.

Finally, we generate two corrupted graph views G̃1, G̃2 by jointly
performing topology- and node-attribute-level augmentation. In
GCA, the probability 𝑝𝑒 and 𝑝 𝑓 is different for generating the two
views to provide a diverse context for contrastive learning, where
the probabilities for the first and the second view are denoted by
𝑝𝑒,1, 𝑝 𝑓 ,1 and 𝑝𝑒,2, 𝑝 𝑓 ,2 respectively.

In this paper, we propose and evaluate three model variants,
denoted as GCA-DE, GCA-EV, and GCA-PR. The three variants
employ degree, eigenvector, and PageRank centrality measures
respectively. Note that all centrality and weight measures are only
dependent on the topology and node attributes of the original graph.
Therefore, they only need to be computed once and do not bring
much computational burden.

3.4 Theoretical Justification
In this section, we provide theoretical justification behind our model
from two perspectives, i.e. MI maximization and the triplet loss.
Detailed proofs can be found in Appendix B.

Connections to MI maximization. Firstly, we reveal the connec-
tions between our loss and MI maximization between node fea-
tures and the embeddings in the two views. The InfoMax princi-
ple has been widely applied in representation learning literature
[1, 35, 41, 42]. MI quantifies the amount of information obtained
about one random variable by observing the other random variable.

Theorem 1. Let 𝑿𝑖 = {𝒙𝑘 }𝑘∈N(𝑖) be the neighborhood of node 𝑣𝑖
that collectively maps to its output embedding, where N(𝑖) denotes
the set of neighbors of node 𝑣𝑖 specified by GNN architectures, and
𝑿 be the corresponding random variable with a uniform distribution
𝑝 (𝑿𝑖 ) = 1/𝑁 . Given two random variables 𝑼 , 𝑽 ∈ R𝐹 ′ being the
embedding in the two views, with their joint distribution denoted as
𝑝 (𝑼 , 𝑽 ), our objective J is a lower bound of MI between encoder input
𝑿 and node representations in two graph views 𝑼 , 𝑽 . Formally,

J ≤ 𝐼 (𝑿 ;𝑼 , 𝑽 ). (10)

Proof sketch. We first observe that our objective J is a lower
bound of the InfoNCE objective [35, 43], defined by 𝐼NCE (𝑼 ; 𝑽 ) ≜

E∏
𝑖 𝑝 (𝒖𝑖 ,𝒗𝑖 )

[
1
𝑁

∑𝑁
𝑖=1 log 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )

1
𝑁

∑𝑁
𝑗=1 𝑒

𝜃 (𝒖𝑖 ,𝒗𝑗 )

]
. Since the InfoNCE esti-

mator is a lower bound of the true MI, the theorem directly follows
from the application of data processing inequality [5], which states
that 𝐼 (𝑼 ; 𝑽 ) ≤ 𝐼 (𝑿 ;𝑼 , 𝑽 ). □

Remark. Theorem 1 reveals that maximizing J is equivalent to
explicitly maximizing a lower bound of the MI 𝐼 (𝑿 ;𝑼 , 𝑽 ) between
input node features and learned node representations. Recent work
further provides empirical evidence that optimizing a stricter bound
of MI may not lead to better downstream performance on visual
representation learning [41, 42], which further highlights the im-
portance of the design of data augmentation strategies.

When optimizing 𝐼 (𝑼 ; 𝑽 ), a lower bound of 𝐼 (𝑿 ;𝑼 , 𝑽 ), we en-
courage the model to encode shared information between the two
views. From the amortized perspective, corrupted views will follow
a skewed distribution where important link structures and features

are emphasized. By contrasting the two views, the model is en-
forced to encode the emphasized information into representations,
which improves embedding quality.

However, as the objective is not defined specifically on negative
samples generated by the augmentation function, it remains chal-
lenging to derive the relationship between specific augmentation
functions and the lower bound. We shall leave it for future work.

Connections to the triplet loss. Alternatively, we may also view the
optimization problem in Eq. (2) as a classical triplet loss, commonly
used in deep metric learning.

Theorem 2. When the projection function𝑔 is the identity function
and we measure embedding similarity by simply taking the inner
product, i.e. 𝑠 (𝒖, 𝒗) = 𝒖⊤𝒗, and further assuming that positive pairs
are far more aligned than negative pairs, i.e. 𝒖⊤

𝑖
𝒗𝑘 ≪ 𝒖⊤

𝑖
𝒗𝑖 and

𝒖⊤
𝑖
𝒖𝑘 ≪ 𝒖⊤

𝑖
𝒗𝑖 , minimizing the pairwise objective ℓ (𝒖𝑖 , 𝒗𝑖 ) coincides

with maximizing the triplet loss, as given in the sequel

− ℓ (𝒖𝑖 , 𝒗𝑖 ) ∝

4𝜏 +
∑︁
𝑗≠𝑖

(
∥𝒖𝑖 − 𝒗𝑖 ∥2 − ∥𝒖𝑖 − 𝒗 𝑗 ∥2 + ∥𝒖𝑖 − 𝒗𝑖 ∥2 − ∥𝒖𝑖 − 𝒖 𝑗 ∥2

)
.

(11)

Remark. Theorem 2 draws connections between the objective and
the classical triplet loss. In other words, we may regard the problem
in Eq. (2) as learning graph convolutional encoders to encourage
positive samples being further away from negative samples in the
embedding space. Moreover, by viewing the objective from the met-
ric learning perspective, we highlight the importance of appropriate
data augmentation schemes, which is often neglected in previous
InfoMax-based methods. Specifically, as the objective pulls together
representation of each node in the two corrupted views, the model
is enforced to encode information in the input graph that is insen-
sitive to perturbation. Since the proposed adaptive augmentation
schemes tend to keep important link structures and node attributes
intact in the perturbation, the model is guided to encode essential
structural and semantic information into the representation, which
improves the quality of embeddings. Last, the contrastive objec-
tive used in GCA is cheap to optimize, since we do not have to
generate negative samples explicitly and all computation can be
performed in parallel. In contrast, the triplet loss is known to be
computationally expensive [38].

4 EXPERIMENTS
In this section, we conduct experiments to evaluate our model
through answering the following questions.

• RQ1. Does our proposed GCA outperform existing baseline
methods on node classification?
• RQ2. Do all proposed adaptive graph augmentation schemes

benefit the learning of the proposed model? How does each
graph augmentation scheme affect model performance?
• RQ3. Is the proposed model sensitive to hyperparameters?

How do key hyperparameters impact the model performance?

We begin with a brief introduction of the experimental setup, and
then we proceed to details of experimental results and their analysis.
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Table 2: Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Features #Classes

Wiki-CS1 11,701 216,123 300 10
Amazon-Computers2 13,752 245,861 767 10

Amazon-Photo3 7,650 119,081 745 8
Coauthor-CS4 18,333 81,894 6,805 15

Coauthor-Physics5 34,493 247,962 8,415 5
1 https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
2 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_
computers.npz
3 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_
photo.npz
4 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_cs.npz
5 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_phy.npz

4.1 Experimental Setup
4.1.1 Datasets. For comprehensive comparison, we use five widely-
used datasets, including Wiki-CS, Amazon-Computers, Amazon-
Photo, Coauthor-CS, and Coauthor-Physics, to study the perfor-
mance of transductive node classification. The datasets are collected
from real-world networks from different domains; their detailed
statistics is summarized in Table 2.
• Wiki-CS [27] is a reference network constructed based on

Wikipedia. The nodes correspond to articles about computer
science and edges are hyperlinks between the articles. Nodes
are labeled with ten classes each representing a branch of
the field. Node features are calculated as the average of pre-
trained GloVe [33] word embeddings of words in each article.
• Amazon-Computers andAmazon-Photo [39] are two net-

works of co-purchase relationships constructed from Ama-
zon, where nodes are goods and two goods are connected
when they are frequently bought together. Each node has a
sparse bag-of-words feature encoding product reviews and
is labeled with its category.
• Coauthor-CS and Coauthor-Physics [39] are two aca-

demic networks, which contain co-authorship graphs based
on the Microsoft Academic Graph from the KDD Cup 2016
challenge. In these graphs, nodes represent authors and
edges indicate co-authorship relationships; that is, two nodes
are connected if they have co-authored a paper. Each node
has a sparse bag-of-words feature based on paper keywords
of the author. The label of an author corresponds to their
most active research field.

Among these datasets, Wiki-CS has dense numerical features, while
the other four datasets only contain sparse one-hot features. For
the Wiki-CS dataset, we evaluate the models on the public splits
shipped with the dataset [27]. Regarding the other four datasets,
since they have no public splits available, we instead randomly split
the datasets, where 10%, 10%, and the rest 80% of nodes are selected
for the training, validation, and test set, respectively.

4.1.2 Evaluation protocol. For every experiment, we follow the
linear evaluation scheme as introduced in Veličković et al. [45],
where each model is firstly trained in an unsupervised manner;
then, the resulting embeddings are used to train and test a simple
ℓ2-regularized logistic regression classifier. We train the model for

twenty runs for different data splits and report the averaged perfor-
mance on each dataset for fair evaluation. Moreover, we measure
performance in terms of accuracy in these experiments.

4.1.3 Baselines. We consider representative baseline methods be-
longing to the following two categories: (1) traditional methods
including DeepWalk [34] and node2vec [11] and (2) deep learn-
ing methods including Graph Autoencoders (GAE, VGAE) [22],
Deep Graph Infomax (DGI) [45], Graphical Mutual Information
Maximization (GMI) [32], and Multi-View Graph Representation
Learning (MVGRL) [16]. Furthermore, we report the performance
obtained using a logistic regression classifier on raw node features
and DeepWalk with embeddings concatenated with input node fea-
tures. To directly compare our proposed method with supervised
counterparts, we also report the performance of two representa-
tive models Graph Convolutional Networks (GCN) [23] and Graph
Attention Networks (GAT) [44], where they are trained in an end-
to-end fashion. For all baselines, we report their performance based
on their official implementations.

4.1.4 Implementation details. We employ a two-layer GCN [23] as
the encoder for all deep learning baselines due to its simplicity. The
encoder architecture is formally given by

GC𝑖 (𝑿 ,𝑨) = 𝜎

(
�̂�−

1
2 �̂��̂�−

1
2 𝑿𝑾𝑖

)
, (12)

𝑓 (𝑿 ,𝑨) = GC2 (GC1 (𝑿 ,𝑨),𝑨). (13)

where �̂� = 𝑨 + 𝑰 is the adjacency matrix with self-loops, �̂� =∑
𝑖 �̂�𝑖 is the degree matrix, 𝜎 (·) is a nonlinear activation function,

e.g., ReLU(·) = max(0, ·), and 𝑾𝑖 is a trainable weight matrix. For
experimental specifications, including details of the configurations
of the optimizer and hyperparameter settings, we refer readers of
interest to Appendix A.

4.2 Performance on Node Classification (RQ1)
The empirical performance is summarized in Table 3. Overall, from
the table, we can see that our proposed model shows strong perfor-
mance across all five datasets. GCA consistently performs better
than unsupervised baselines by considerable margins on the trans-
ductive node classification task. The strong performance verifies
the superiority of the proposed contrastive learning framework.
On the two Coauthor datasets, we note that existing baselines have
already obtained high enough performance; our method GCA still
pushes that boundary forward. Moreover, we particularly note that
GCA is competitive with models trained with label supervision on
all five datasets.

We make other observations as follows. Firstly, the performance
of traditional contrastive learning methods like DeepWalk is inferior
to the simple logistic regression classifier that only uses raw fea-
tures on some datasets (Coauthor-CS and Coauthor-Physics), which
suggests that these methods may be ineffective in utilizing node
features. Unlike traditional work, we see that GCN-based methods,
e.g., GAE, are capable of incorporating node features when learning
embeddings. However, we note that on certain datasets (Wiki-CS),
their performance is still worse than DeepWalk + feature, which we
believe can be attributed to their naïve method of selecting negative
samples that simply chooses contrastive pairs based on edges. This
fact further demonstrates the important role of selecting negative

https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_computers.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_computers.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_photo.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_photo.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_cs.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_phy.npz
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Table 3: Summary of performance on node classification in terms of accuracy in percentage with standard deviation. Available
data for each method during the training phase is shown in the second column, where 𝑿 ,𝑨, 𝒀 correspond to node features, the
adjacency matrix, and labels respectively. The highest performance of unsupervised models is highlighted in boldface; the
highest performance of supervised models is underlined. OOM indicates Out-Of-Memory on a 32GB GPU.

Method Training Data Wiki-CS Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics
Raw features 𝑿 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00

node2vec 𝑨 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04
DeepWalk 𝑨 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15

DeepWalk + features 𝑿 ,𝑨 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09
GAE 𝑿 ,𝑨 70.15 ± 0.01 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.07

VGAE 𝑿 ,𝑨 75.63 ± 0.19 86.37 ± 0.21 92.20 ± 0.11 92.11 ± 0.09 94.52 ± 0.00
DGI 𝑿 ,𝑨 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
GMI 𝑿 ,𝑨 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM

MVGRL 𝑿 ,𝑨 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GCA-DE 𝑿 ,𝑨 78.30 ± 0.00 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01 95.68 ± 0.05
GCA-PR 𝑿 ,𝑨 78.35 ± 0.05 87.80 ± 0.23 92.53 ± 0.16 93.06 ± 0.03 95.72 ± 0.03
GCA-EV 𝑿 ,𝑨 78.23 ± 0.04 87.54 ± 0.49 92.24 ± 0.21 92.95 ± 0.13 95.73 ± 0.03

GCN 𝑿 ,𝑨, 𝒀 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
GAT 𝑿 ,𝑨, 𝒀 77.65 ± 0.11 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24 95.47 ± 0.15

Table 4: Performance of model variants on node classification in terms of accuracy in percentage with standard deviation. We
use the degree centrality in all variants. The highest performance is highlighted in boldface.

Variant Topology Attribute Wiki-CS Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics
GCA–T–A Uniform Uniform 78.19 ± 0.01 86.25 ± 0.25 92.15 ± 0.24 92.93 ± 0.01 95.26 ± 0.02

GCA–T Uniform Adaptive 78.23 ± 0.02 86.72 ± 0.49 92.20 ± 0.26 93.07 ± 0.01 95.59 ± 0.04
GCA–A Adaptive Uniform 78.25 ± 0.02 87.66 ± 0.30 92.23 ± 0.20 93.02 ± 0.01 95.54 ± 0.02
GCA Adaptive Adaptive 78.30 ± 0.01 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01 95.68 ± 0.05

samples based on augmented graph views in contrastive representa-
tion learning. Moreover, compared to existing baselines DGI, GMI,
and MVGRL, our proposed method performs strong, adaptive data
augmentation in constructing negative samples, leading to better
performance. Note that, although MVGRL employs diffusion to in-
corporate global information into augmented views, it still fails to
consider the impacts of different edges adaptively on input graphs.
The superior performance of GCA verifies that our proposed adap-
tive data augmentation scheme is able to help improve embedding
quality by preserving important patterns during perturbation.

Secondly, we observe that all three variants with different node
centrality measures of GCA outperform existing contrastive base-
lines on all datasets. We also notice that GCA-DE and GCA-PR with
the degree and PageRank centrality respectively are two strong
variants that achieve the best or competitive performance on all
datasets. Please kindly note that the result indicates that our model
is not limited to specific choices of centrality measures and verifies
the effectiveness and generality of our proposed framework.

In summary, the superior performance of GCA compared to
existing state-of-the-art methods verifies the effectiveness of our
proposed GCA framework that performs data augmentation adap-
tive to the graph structure and attributes.

4.3 Ablation Studies (RQ2)
In this section, we substitute the proposed topology and attribute
level augmentation with their uniform counterparts to study the
impact of each component of GCA. GCA–T–A denotes the model
with uniform topology and node attribute augmentation schemes,
where the probabilities of dropping edge and masking features are
set to the same for all nodes. The variants GCA–T and GCA–A are
defined similarly except that we substitute the topology and the
node attribute augmentation scheme with uniform sampling in the
two models respectively. Degree centrality is used in all the variants
for fair comparison. Please kindly note that the downgraded GCA–
T–A fallbacks to our preliminary work GRACE [52].

The results are presented in Table 4, where we can see that
both topology-level and node-attribute-level adaptive augmentation
scheme improve model performance consistently on all datasets.
In addition, the combination of adaptive augmentation schemes on
the two levels further benefits the performance. On the Amazon-
Computers dataset, our proposed GCA gains 1.5% absolute improve-
ment compared to the base model with no adaptive augmentation
enabled. The results verify the effectiveness of our adaptive aug-
mentation schemes on both topology and node attribute levels.
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Figure 3: The performance of GCAwith varied hyperparame-
ters 𝑝𝑒 and 𝑝 𝑓 on the Amazon-Photo dataset in terms of node
classification accuracy.

4.4 Sensitivity Analysis (RQ3)
In this section, we perform sensitivity analysis on critical hyper-
parameters in GCA, namely four probabilities 𝑝𝑒,1, 𝑝 𝑓 ,1, 𝑝𝑒,2, and
𝑝 𝑓 ,2 that determine the generation of graph views to show the sta-
bility of the model under perturbation of these hyperparameters.
We conduct transductive node classification by varying these pa-
rameters from 0.1 to 0.9. For sake of visualization brevity, we set
𝑝𝑒 = 𝑝𝑒,1 = 𝑝𝑒,2 and 𝑝 𝑓 = 𝑝 𝑓 ,1 = 𝑝 𝑓 ,2 to control the magnitude of
the proposed topology and node attribute level augmentation. We
only change these four parameters in the sensitivity analysis, and
other parameters remain the same as previously described.

The results on the Amazon-Photo dataset are shown in Figure 3.
From the figure, it can be observed that the performance of node
classification in terms of accuracy is relatively stable when the
parameters are not too large, as shown in the plateau in the figure.
We thus conclude that, overall, our model is insensitive to these
probabilities, demonstrating the robustness to hyperparameter per-
turbation. If the probability is set too large (e.g., > 0.5), the original
graph will be heavily undermined. For example, when 𝑝𝑒 = 0.9,
almost every existing edge has been removed, leading to too many
isolated nodes in the generated graph views. Under such circum-
stances, the GNN is hard to learn useful information from node
neighborhoods. Therefore, the learned node embeddings in the two
graph views are not distinctive enough, which will result in the
difficulty of optimizing the contrastive objective.

5 CONCLUSION
In this paper, we have developed a novel graph contrastive repre-
sentation learning framework with adaptive augmentation. Our
model learns representation by maximizing the agreement of node
embeddings between views that are generated by adaptive graph
augmentation. The proposed adaptive augmentation scheme first
identifies important edges and feature dimensions via network
centrality measures. Then, on the topology level, we randomly re-
move edges by assigning large probabilities on unimportant edges
to enforce the model to recognize network connectivity patterns.
On the node attribute level, we corrupt attributes by adding more

noise to unimportant feature dimensions to emphasize the under-
lying semantic information. We have conducted comprehensive
experiments using various real-world datasets. Experimental results
demonstrate that our proposed GCA method consistently outper-
forms existing state-of-the-art methods and even surpasses several
supervised counterparts.
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DISCUSSIONS ON BROADER IMPACT
This paper presents a novel graph contrastive learning framework,
and we believe it would be beneficial to the graph machine learn-
ing community both theoretically and practically. Our proposed
self-supervised graph representation learning techniques help al-
leviate the label scarcity issue when deploying machine learning
applications in real-world, which saves a lot of efforts on human
annotating. For example, our GCA framework can be plugged into
existing recommender systems and produces high-quality embed-
dings for users and items to resolve the cold start problem. Note
that our work mainly serves as a plug-in module for existing ma-
chine learning pipelines, it does not bring new ethical concerns.
However, the GCA model may still give biased outputs (e.g., gender
bias, ethnicity bias), as the provided data itself may be strongly
biased during the processes of data measurement and collection,
graph construction, etc.

A IMPLEMENTATION DETAILS
A.1 Computing Infrastructures

Software infrastructures. All models are implemented using Py-
Torch Geometric 1.6.1 [7], PyTorch 1.6.0 [31], and NetworkX 2.5
[13]. All datasets used throughout experiments are available in
PyTorch Geometric libraries.

Hardware infrastructures. We conduct experiments on a com-
puter server with four NVIDIA Tesla V100S GPUs (with 32GB
memory each) and twelve Intel Xeon Silver 4214 CPUs.

A.2 Hyperparameter Specifications
All model parameters are initialized with Glorot initialization [9],
and trained using the Adam SGD optimizer [21] on all datasets. The
ℓ2 weight decay factor is set to 10−5 and the dropout rate [40] is
set to zero on all datasets. The probability parameters controlling
the sampling process, 𝑝𝑒,1, 𝑝 𝑓 ,1 for the first view and 𝑝𝑒,2, 𝑝 𝑓 ,2 for
the second view, are all selected between 0.0 and 0.4 in order to
prevent the original graph from being overly corrupted. Note that
to generate different contexts for nodes in the two views, we set
𝑝𝑒,1 and 𝑝𝑒,2 to be distinct, and the same for 𝑝 𝑓 ,1 and 𝑝 𝑓 ,2. We
summarize all dataset-specific hyperparameter configurations in
Table 5.
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Table 5: Hypeparameter specifications.

Dataset 𝑝𝑒,1 𝑝𝑒,2 𝑝 𝑓 ,1 𝑝 𝑓 ,2 𝑝𝜏 𝜏
Learning

rate
Training
epochs

Hidden
dimension

Activation
function

Wiki-CS 0.2 0.4 0.1 0.1 0.7 0.6 0.01 3,000 256 PReLU
Amazon-Computers 0.5 0.5 0.2 0.1 0.7 0.1 0.01 1,500 128 PReLU

Amazon-Photo 0.3 0.5 0.1 0.1 0.7 0.3 0.1 2,000 256 ReLU
Coauthor-CS 0.3 0.2 0.3 0.4 0.7 0.4 0.0005 1,000 256 RReLU

Coauthor-Physics 0.4 0.1 0.1 0.4 0.7 0.5 0.01 1,500 128 RReLU

B DETAILED PROOFS
B.1 Proof of Theorem 1

Theorem 1. Let 𝑿𝑖 = {𝒙𝑘 }𝑘∈N(𝑖) be the neighborhood of node 𝑣𝑖
that collectively maps to its output embedding, where N(𝑖) denotes
the set of neighbors of node 𝑣𝑖 specified by GNN architectures, and
𝑿 be the corresponding random variable with a uniform distribution
𝑝 (𝑿𝑖 ) = 1/𝑁 . Given two random variables 𝑼, 𝑽 ∈ R𝐹 ′ being the
embedding in the two views, with their joint distribution denoted as
𝑝 (𝑼 , 𝑽 ), our objective J is a lower bound of MI between encoder input
𝑿 and node representations in two graph views 𝑼, 𝑽 . Formally,

J ≤ 𝐼 (𝑿 ;𝑼 , 𝑽 ). (14)

Proof. We first show the connection between our objective J
and the InfoNCE objective [35, 43] , which is defined as

𝐼NCE (𝑼 ; 𝑽 ) ≜ E∏
𝑖 𝑝 (𝒖𝑖 ,𝒗𝑖 )

[
1
𝑁

𝑁∑︁
𝑖=1

log 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )

1
𝑁

∑𝑁
𝑗=1 𝑒

𝜃 (𝒖𝑖 ,𝒗𝑗 )

]
,

where the critic function is defined as 𝜃 (𝒙,𝒚) = 𝑠 (𝑔(𝒙), 𝑔(𝒚)).
We further define 𝜌𝑟 (𝒖𝑖 ) =

∑𝑁
𝑗≠𝑖 exp(𝜃 (𝒖𝑖 , 𝒖 𝑗 )/𝜏) and 𝜌𝑐 (𝒖𝑖 ) =∑𝑁

𝑗=1 exp(𝜃 (𝒖𝑖 , 𝒗 𝑗 )/𝜏) for convenience of notation. 𝜌𝑟 (𝒗𝑖 ) and 𝜌𝑐 (𝒗𝑖 )
can be defined symmetrically. Then, our objective J can be rewrit-
ten as

J = E∏
𝑖 𝑝 (𝒖𝑖 ,𝒗𝑖 )

[
1
𝑁

𝑁∑︁
𝑖=1

log exp(𝜃 (𝒖𝑖 , 𝒗𝑖 )/𝜏)√︁
(𝜌𝑐 (𝒖𝑖 ) + 𝜌𝑟 (𝒖𝑖 )) (𝜌𝑐 (𝒗𝑖 ) + 𝜌𝑟 (𝒗𝑖 ))

]
.

(15)
Using the notation of 𝜌𝑐 , the InfoNCE estimator 𝐼NCE can be written
as

𝐼NCE (𝑼 , 𝑽 ) = E∏𝑖 𝑝 (𝒖𝑖 ,𝒗𝑖 )

[
1
𝑁

𝑁∑︁
𝑖=1

log exp(𝜃 (𝒖𝑖 , 𝒗𝑖 )/𝜏)
𝜌𝑐 (𝒖𝑖 )

]
. (16)

Therefore,

2J = 𝐼NCE (𝑼 , 𝑽 ) − E∏𝑖 𝑝 (𝒖𝑖 ,𝒗𝑖 )

[
1
𝑁

𝑁∑︁
𝑖=1

log
(
1 + 𝜌𝑟 (𝒖𝑖 )

𝜌𝑐 (𝒖𝑖 )

)]
+ 𝐼NCE (𝑽 , 𝑼 ) − E∏𝑖 𝑝 (𝒖𝑖 ,𝒗𝑖 )

[
1
𝑁

𝑁∑︁
𝑖=1

log
(
1 + 𝜌𝑟 (𝒗𝑖 )

𝜌𝑐 (𝒗𝑖 )

)]
≤ 𝐼NCE (𝑼 , 𝑽 ) + 𝐼NCE (𝑽 , 𝑼 ).

(17)

According to Poole et al. [35], the InfoNCE estimator is a lower
bound of the true MI, i.e.

𝐼NCE (𝑼 , 𝑽 ) ≤ 𝐼 (𝑼 ; 𝑽 ) . (18)

Thus, we arrive at

2J ≤ 𝐼 (𝑼 ; 𝑽 ) + 𝐼 (𝑽 ;𝑼 ) = 2𝐼 (𝑼 ; 𝑽 ), (19)

which leads to the inequality

J ≤ 𝐼 (𝑼 ; 𝑽 ) . (20)

According to the data processing inequality [5], which states
that, for all random variables 𝑿 , 𝒀 ,𝒁 satisfying the Markov relation
𝑿 → 𝒀 → 𝒁 , the inequality 𝐼 (𝑿 ;𝒁 ) ≤ 𝐼 (𝑿 ; 𝒀 ) holds. Then, we
observe that 𝑿 , 𝑼 , 𝑽 satisfy the relation 𝑼 ← 𝑿 → 𝑽 . Since, 𝑼 and
𝑽 are conditionally independent after observing 𝑿 , the relation
is Markov equivalent to 𝑼 → 𝑿 → 𝑽 , which leads to 𝐼 (𝑼 ; 𝑽 ) ≤
𝐼 (𝑼 ;𝑿 ). We further notice that the relation𝑿 → (𝑼 , 𝑽 ) → 𝑼 holds,
and hence it follows that 𝐼 (𝑿 ;𝑼 ) ≤ 𝐼 (𝑿 ;𝑼 , 𝑽 ). Combining the two
inequalities yields the required inequality

𝐼 (𝑼 ; 𝑽 ) ≤ 𝐼 (𝑿 ;𝑼 , 𝑽 ) . (21)

Following Eq. (20) and Eq. (21), we finally arrive at inequality

J ≤ 𝐼 (𝑿 ;𝑼 , 𝑽 ), (22)

which concludes the proof. □

B.2 Proof of Theorem 2
Theorem 2. When the projection function𝑔 is the identity function

and we measure embedding similarity by simply taking inner product,
and further assuming that positive pairs are far more aligned than
negative pairs, i.e. 𝒖⊤

𝑖
𝒗𝑘 ≪ 𝒖⊤

𝑖
𝒗𝑖 and 𝒖⊤

𝑖
𝒖𝑘 ≪ 𝒖⊤

𝑖
𝒗𝑖 , minimizing

the pairwise objective ℓ (𝒖𝑖 , 𝒗𝑖 ) coincides with maximizing the triplet
loss, as given in the sequel

− ℓ (𝒖𝑖 , 𝒗𝑖 ) ∝

4𝜏 +
∑︁
𝑗≠𝑖

(
∥𝒖𝑖 − 𝒗𝑖 ∥2 − ∥𝒖𝑖 − 𝒗 𝑗 ∥2 + ∥𝒖𝑖 − 𝒗𝑖 ∥2 − ∥𝒖𝑖 − 𝒖 𝑗 ∥2

)
.

(23)

Proof. Based on the assumptions, we can rearrange the pairwise
objective as

− ℓ (𝒖𝑖 , 𝒗𝑖 )

= − log 𝑒 (𝒖⊤𝑖 𝒗𝑖/𝜏)∑𝑁
𝑘=1 𝑒

(𝒖⊤𝑖 𝒗𝑘/𝜏) +∑𝑁
𝑘≠𝑖

𝑒 (𝒖⊤𝑖 𝒖𝑘/𝜏)

= log ©«1 +
𝑁∑︁
𝑘≠𝑖

𝑒

(
𝒖⊤
𝑖
𝒗𝑘−𝒖⊤𝑖 𝒗𝑖

𝜏

)
+

𝑁∑︁
𝑘≠𝑖

𝑒

(
𝒖⊤
𝑖
𝒖𝑘−𝒖⊤𝑖 𝒗𝑖

𝜏

)ª®¬ .
(24)
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By Taylor expansion of first order,

− ℓ (𝒖𝑖 , 𝒗𝑖 )

≈
𝑁∑︁
𝑘≠𝑖

exp
(
𝒖⊤
𝑖
𝒗𝑘 − 𝒖⊤𝑖 𝒗𝑖

𝜏

)
+

𝑁∑︁
𝑘≠𝑖

exp
(
𝒖⊤
𝑖
𝒖𝑘 − 𝒖⊤𝑖 𝒗𝑖

𝜏

)
≈ 2 + 1

𝜏

[
𝑁∑︁
𝑘≠𝑖

(𝒖⊤𝑖 𝒗𝑘 − 𝒖
⊤
𝑖 𝒗𝑖 ) +

𝑁∑︁
𝑘≠𝑖

(𝒖⊤𝑖 𝒖𝑘 − 𝒖
⊤
𝑖 𝒗𝑖 )

]
= 2 − 1

2𝜏

𝑁∑︁
𝑘≠𝑖

(
∥𝒖𝑖 − 𝒗𝑘 ∥2 − ∥𝒖𝑖 − 𝒗𝑖 ∥2 + ∥𝒖𝑖 − 𝒖𝑘 ∥2 − ∥𝒖𝑖 − 𝒗𝑖 ∥2

)
∝ 4𝜏 +

𝑁∑︁
𝑘≠𝑖

(
∥𝒖𝑖 − 𝒗𝑖 ∥2 − ∥𝒖𝑖 − 𝒗𝑘 ∥2 + ∥𝒖𝑖 − 𝒗𝑖 ∥2 − ∥𝒖𝑖 − 𝒖𝑘 ∥2

)
,

(25)
which concludes the proof. □
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